

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify any
of the information contained herein.

MEF Standard

MEF 78

MEF Core Model (MCM)

January 2019

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify any
of the information contained herein.

Disclaimer

© MEF Forum 2019. All Rights Reserved.

The information in this publication is freely available for reproduction and use by any recipient

and is believed to be accurate as of its publication date. Such information is subject to change

without notice and MEF Forum (MEF) is not responsible for any errors. MEF does not assume

responsibility to update or correct any information in this publication. No representation or war-

ranty, expressed or implied, is made by MEF concerning the completeness, accuracy, or applica-

bility of any information contained herein and no liability of any kind shall be assumed by MEF

as a result of reliance upon such information.

The information contained herein is intended to be used without modification by the recipient or

user of this document. MEF is not responsible or liable for any modifications to this document

made by any other party.

The receipt or any use of this document or its contents does not in any way create, by implication

or otherwise:

a) any express or implied license or right to or under any patent, copyright, trademark or

trade secret rights held or claimed by any MEF member which are or may be associated

with the ideas, techniques, concepts or expressions contained herein; nor

b) any warranty or representation that any MEF members will announce any product(s)

and/or service(s) related thereto, or if such announcements are made, that such an-

nounced product(s) and/or service(s) embody any or all of the ideas, technologies, or

concepts contained herein; nor

c) any form of relationship between any MEF member and the recipient or user of this

document.

Implementation or use of specific MEF standards, specifications, or recommendations will be vol-

untary, and no Member shall be obliged to implement them by virtue of participation in MEF

Forum. MEF is a non-profit international organization to enable the development and worldwide

adoption of agile, assured and orchestrated network services. MEF does not, expressly or other-

wise, endorse or promote any specific products or services.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page iii

Table of Contents

1 List of Contributing Members ... 1

2 Abstract .. 2

3 Terminology and Abbreviations .. 3

4 Compliance Levels .. 6

5 Numerical Prefix Conventions ... 6

6 Introduction ... 7

7 MEF Core Model (MCM) .. 9

7.1 Overview of the MCM .. 9
7.1.1 The Top Portion of the MCM ... 10
7.1.2 MCMEntity Hierarchy .. 13
7.1.3 MCMInformationResource Hierarchy .. 13
7.1.4 Top Portion of the MCMMetaData Hierarchy .. 14
7.1.5 MCM Compliance ... 18
7.1.6 Alignment With Other SDOs .. 19
7.1.7 Alignment With Existing MEF Work ... 19

7.2 MCMRootEntity Class Definition ... 21
7.3 The MCMEntity Hierarchy ... 24

7.4 MCMEntity Class Definition... 26
7.4.1 MCMEntityHasMCMMetaDataDetail Class Definition ... 30

7.5 MCMUnManagedEntity Class Hierarchy ... 33
7.5.1 MCMUnManagedEntity Class Definition .. 34
7.5.2 MCMLocation Class Design ... 36

7.5.2.1 Requirements ... 36
7.5.2.2 Design .. 37

7.5.3 MCMLocation Class Definition .. 38
7.5.4 MCMLocationAtomic Class Definition .. 44
7.5.5 MCMLocationComposite Class Definition... 44
7.5.6 MCMPhysicalEntity Class Definition ... 48
7.5.7 MCMPhysicalEntityAtomic Class Definition ... 52
7.5.8 MCMPhysicalEntityComposite Class Definition ... 52

7.6 MCMDomain Class Hierarchy .. 56
7.6.1 MCMDomain Class Definitiion .. 57
7.6.2 MCMManagementDomain Class Definition .. 57
7.6.3 MCMMgmtDomainAtomic Class Definition ... 59
7.6.4 MCMMgmtDomainComposite Class Definition .. 59

7.7 MCMBusinessObject Class Hierarchy .. 62
7.7.1 MCMBusinessObject Class Definition ... 63
7.7.2 MCMOrderStructure Class Definition .. 65
7.7.3 MCMOrderAtomic Class Definition ... 74
7.7.4 MCMOrderComposite Class Definition ... 75
7.7.5 MCMOrderItem Class Definition ... 77

7.8 MCMManagedEntity Class Hierarchy .. 85
7.8.1 MCMManagedEntity Class Definition ... 87
7.8.2 MCMDefinition Class Hierarchy .. 93

7.8.2.1 MCMDefinition Class Definition ... 93

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page iv

7.8.2.2 MCMDefinitionDecorator Class Definition .. 94
7.8.2.3 MCMBusinessTerm Class Definition .. 94
7.8.2.4 MCMFeature Class Description.. 98
7.8.2.5 MCMProductFeature Class Definition ... 98
7.8.2.6 MCMService Feature Class Definition ... 99
7.8.2.7 MCMResourceFeature Class Definition ... 99
7.8.2.8 MCMOffer Class Definition .. 99
7.8.2.9 MCMProductOffer Class Definition ... 102
7.8.2.10 MCMServiceOffer Class Definition ... 104
7.8.2.11 MCMResourceOffer Class Definition.. 105

7.8.3 MCMPolicyObject Class Definition ... 107
7.8.4 MCMProduct Class Hierarchy .. 108

7.8.4.1 MCMProduct Class Definition .. 108
7.8.4.2 MCMProductAtomic Class Definition ... 109
7.8.4.3 MCMProductComposite Class Definition ... 109

7.8.5 MCMService Class Hierarchy .. 112
7.8.5.1 MCMService Class Definition ... 112
7.8.5.2 MCMServiceAtomic Class Definition .. 113
7.8.5.3 MCMServiceComposite Class Definition .. 113
7.8.5.4 MCMDeliveredService Class Definition ... 116
7.8.5.5 MCMOrderedService Class Definition.. 120
7.8.5.6 MCMInternalService Class Definition .. 120
7.8.5.7 MCMServiceDecorator Class Definition .. 120
7.8.5.8 MCMServiceComponent Class Definition ... 124
7.8.5.9 MCMServiceEndpoint Class Definition .. 124

7.8.6 MCMResource Class Hierarchy .. 126
7.8.6.1 MCMResource Class Definition .. 126
7.8.6.2 MCMVirtualResource Class Hierarchy .. 127
7.8.6.3 MCMVirtualResourceAtomic Class Definition ... 127
7.8.6.4 MCMVirtualResourceComposite Class Definition .. 128
7.8.6.5 MCMLogicalResource Class Definition .. 130
7.8.6.6 MCMLogicalResourceAtomic Class Definition .. 131
7.8.6.7 MCMLogicalResourceComposite Class Definition ... 131
7.8.6.8 MCMCatalog Class Definition .. 134
7.8.6.9 MCMCatalogItem Class Definition ... 137
7.8.6.10 MCMServiceInterface Class Definition ... 137

7.9 MCMParty Class Hierarchy .. 138
7.9.1 MCMParty Class Definition.. 139
7.9.2 MCMOrganization Class Definition ... 141
7.9.3 MCMPerson Class Definition ... 143

7.10 The InformationResource Class Hierarchy ... 144
7.10.1 MCMInformationResource Class Definition .. 144
7.10.2 MCMNetworkAddress Class Definition ... 148
7.10.3 MCMContact Class Definition .. 148

7.11 The MCMMetaData Class Hierarchy .. 150
7.11.1 MCMMetaData Class Definition .. 150
7.11.2 MCMRole Class Hierarchy ... 153

7.11.2.1 MCMRole Class Definition ... 153
7.11.2.2 MCMPartyRole Class Definition ... 155
7.11.2.3 MCMCustomer Class Definition ... 156
7.11.2.4 MCMServiceProvider Class Definition ... 157

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page v

7.11.2.5 MCMAccessProvider Class Definition .. 157
7.11.2.6 MCMPartner Class Definition .. 158

7.11.3 MCMPolicyRole Class Definition .. 158
7.11.4 MCMPolicyMetaData Class Definition .. 158
7.11.5 MCMGeoSpatialMetaData Class Definition... 158
7.11.6 MCMMetaDataDecorator Class Definition .. 161

7.11.6.1 MCMCapability Class Definition .. 163
7.11.6.2 MCMNetworkFunction .. 163

7.11.6.2.1 Background .. 163
7.11.6.2.2 Rationale for Changing the Definition of a NetworkFunction .. 163
7.11.6.2.3 MCMMEFNetworkFunction Class Definition ... 164

7.11.6.3 MCMMEFDescriptor .. 164
7.11.6.3.1 Background .. 164
7.11.6.3.2 Rationale for Changing the Defintiion of a Descriptor ... 165
7.11.6.3.3 MCMMEFDescriptor Class Definition ... 165

7.11.6.4 MCMVersion Class Definition .. 166

8 References .. 172

Appendix A Basic Mapping between the MCM and TMF Models 174

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page vi

List of Figures

Figure 1. The Lifecycle Service Orchestration Reference Architecture .. 7
Figure 2. The Top Portion of the MCM Class Hierarchy .. 11
Figure 3. The Policy Pattern Applied to MCMEntityHasMCMMetaDataDetail 13
Figure 4. The Top Portion of the MCMInformationResource Hierarchy 14

Figure 5. The Top Portion of the MCMMetaData Hierarchy .. 16
Figure 6. MCMEntity Subclasses .. 24
Figure 7. MCMUnManagedEntity Subclasses .. 33
Figure 8. Representing Geocodes in MCM ... 37
Figure 9. MCMLocation and MCMPhysicalEntity Hierarchies .. 38

Figure 10. MCMDomain Subclasses .. 56
Figure 11. MCMBusinessObject Subclasses ... 62

Figure 12. ManagedEntity Subclasses ... 85

Figure 13. MCMDefinition Class Hierarchy ... 93
Figure 14. The MCMProductDefinedByMCMProductOffer Aggregation 103
Figure 15. The MCMServiceDefinedByMCMService Offer Aggregation 104

Figure 16. The MCMResourceDefinedByMCMResourceOffer Aggregation 106
Figure 17. The MCMProduct Class Hierarchy .. 108
Figure 18. The MCMService Class Hierarchy .. 112

Figure 19. The MCMResource Class Hierarchy, Part 1 .. 126
Figure 20. MCMResource Class Hierarchy, Part 2 ... 130

Figure 21. MCMResource Class Hierarchy, Part 3 ... 134
Figure 22. MCMParty Class Hierarchy ... 138
Figure 23. The MCMInformationResource Class Hierarchy .. 144

Figure 24. The MCMMetaData Class Hierarchy, Part 1 ... 150

Figure 25. MCMMetaData Class Hierarchy, Part 2 .. 153

file:///C:/!MyData/Standards/!MEF/2017/MCM%20CfCB/LB/MCM-Letter-Ballot.docx%23_Toc531770057
file:///C:/!MyData/Standards/!MEF/2017/MCM%20CfCB/LB/MCM-Letter-Ballot.docx%23_Toc531770058
file:///C:/!MyData/Standards/!MEF/2017/MCM%20CfCB/LB/MCM-Letter-Ballot.docx%23_Toc531770059
file:///C:/!MyData/Standards/!MEF/2017/MCM%20CfCB/LB/MCM-Letter-Ballot.docx%23_Toc531770060
file:///C:/!MyData/Standards/!MEF/2017/MCM%20CfCB/LB/MCM-Letter-Ballot.docx%23_Toc531770061
file:///C:/!MyData/Standards/!MEF/2017/MCM%20CfCB/LB/MCM-Letter-Ballot.docx%23_Toc531770063
file:///C:/!MyData/Standards/!MEF/2017/MCM%20CfCB/LB/MCM-Letter-Ballot.docx%23_Toc531770064
file:///C:/!MyData/Standards/!MEF/2017/MCM%20CfCB/LB/MCM-Letter-Ballot.docx%23_Toc531770065
file:///C:/!MyData/Standards/!MEF/2017/MCM%20CfCB/LB/MCM-Letter-Ballot.docx%23_Toc531770066
file:///C:/!MyData/Standards/!MEF/2017/MCM%20CfCB/LB/MCM-Letter-Ballot.docx%23_Toc531770067
file:///C:/!MyData/Standards/!MEF/2017/MCM%20CfCB/LB/MCM-Letter-Ballot.docx%23_Toc531770068

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page vii

List of Tables

Table 1. Terminology and Abbreviations .. 5
Table 2. Numerical Prefix Conventions... 6
Table 3. Attributes of the MCMRootEntity Class ... 22
Table 4. Operations of the MCMRootEntity Class .. 23

Table 5. Functions of the MCMEntity Class and its Subclasses ... 25
Table 6. Operations of the MCMEntity Class ... 29
Table 7. Attributes of the MCMEntityHasMCMMetaDataDetail Association Class.................. 31
Table 8. Operations of the MCMEntityHasMCMMetaDataDetail Association Class 32
Table 9. Functions of the MCMUnManagedEntity Class and its Subclasses.............................. 34

Table 10. Attributes of the MCMUnManagedEntity Class ... 35
Table 11. Operations of the MCMUnManagedEntity Class .. 35

Table 12. Attributes of the MCMLocation Class... 40

Table 13. Operations of the MCMLocation Class ... 43
Table 14. Operations for the MCMLocationComposite Class .. 46
Table 15. Attributes of the MCMPhysicalEntity Class ... 49

Table 16. Operations for the MCMPhysicalEntity Class... 51
Table 17. Operations of the MCMPhysicalEntityComposite Class... 54
Table 18. Functions of the MCMDomain Class and its Subclasses .. 57

Table 19. Operations of the MCMManagementDomain Class ... 58
Table 20. Operations of the MCMManagementDomainComposite Class 61

Table 21. Functions of the MCMBusinessObject and its Subclasses .. 63
Table 22. Attributes of the MCMBusinessObject Class .. 64
Table 23. Operations of the MCMBusinessObject Class .. 65

Table 24. Attributes of the MCMOrderStructure Class ... 68

Table 25. Operations of the MCMOrderStructure Class ... 74
Table 26. Operations for the MCMOrderComposite Class ... 77
Table 27. Attributes of the MCMOrderItem Class .. 80

Table 28. Operations of the MCMOrderItem Class... 84
Table 29. Functions of the MCMManagedEntity Class and its Subclasses 86

Table 30. Attributes of the MCMManagedEntity Class .. 88
Table 31. Operations of the MCMManagedEntity Class... 91
Table 32. Attributes of the MCMBusinessTerm Class .. 95
Table 33. Operations of the MCMBusinessTerm Class .. 97
Table 34. Operations of the MCMOffer Class... 101

Table 35. Attributes of the MCMProductOffer Class .. 102

Table 36. Operations of the MCMProductOffer Class .. 103

Table 37. Operations of the MCMProduct Class ... 109
Table 38. Operations of the MCMProductComposite Class ... 111
Table 39. Operations of the MCMService Class ... 113
Table 40. Operations for the MCMServiceComposite Class... 115
Table 41. Operations for the MCMDeliveredService Class .. 119

Table 42. Operations of the MCMServiceDecorator Class ... 123
Table 43. Operations of the MCMVirtualResource Class ... 127
Table 44. Operations of the MCMVirtualResourceComposite Class .. 129

Table 45. Operations of the MCMLogicalResource Class .. 131

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page viii

Table 46. Operations of the MCMLogicalResource Class .. 133

Table 47. Operations of the Catalog Class... 136
Table 48. Functions of the MCMParty Class and its Subclasses ... 138
Table 49. Operations of the MCMParty Class ... 141
Table 50. Attributes of the MCMOrganization Class .. 142
Table 51. Operations of the MCMOrganization Class .. 143

Table 52. Operations of the MCMInformationResource Class ... 147
Table 53. Attributes of the MCMMetaData Class ... 151
Table 54. Operations of the MCMMetaData Class ... 152
Table 55. Attributes of the MCMRole Class ... 154
Table 56. Operations of the MCMRole Class .. 154

Table 57. Attributes of the MCMCustomer Class ... 156

Table 58. Operations of the MCMCustomer Class .. 157
Table 59. Attributes of the MCMGeoSpatialMetaData Class ... 159

Table 60. Operations of the MCMGeoSpatialMetaData Class .. 160
Table 61. Operations of the MCMMetaDataDecorator Class ... 162
Table 62. Attributes of the MCMVersion Class .. 169
Table 63. Operations of the MCMVersion Class... 171

Table 64. Brief Comparison of MCM and TMF625 Classes... 175

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 1

1 List of Contributing Members

The following members of the MEF participated in the development of this document and have

requested to be included in this list.

Amdocs Huawei Technologies

Coriant (as Infinera) PCCW Global Limited

Ericsson AB Verizon

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 2

2 Abstract

This specification defines the MEF Core Information Model (MCM), which is an information

model describing the base set of object definitions and relationships supporting the concepts de-

fined in the MEF Lifecycle Service Orchestration (LSO) Reference Architecture (RA). The MCM

formalizes these diverse concepts into a coherent, object-oriented information model that can serve

the needs of multiple MEF projects by defining key concepts and functions that can be reused or

refined as necessary.

This specification uses UML (Unified Modeling Language) to describe the salient characteristics

and behavior of entities that are important to the managed environment. This does not mean that

the MCM will try and model “everything”; rather, it means that it will represent key entities that

various MEF projects need. For example, the Sonata Ordering project needs the concept of an

Order. MCM provides a basic set of model elements to represent this (see section 7.7) as a reusable

pattern, so that other similar concepts (e.g., TroubleTicket) can use the same pattern (adjusted as

necessary to suit the differences between TroubleTicket and Order). As another example, ONF

TAPI is used to model lower-level resources in NRM and NRP. A higher-level representation of

resources is required in order to join this lower-level model to other entities (e.g., Products and

Offers). The MCM provides the basis for this higher-level representation.

These entities, and the relationships between them, describe concepts used by different functional

components (e.g., the Service Orchestration Functionality (SOF) and Infrastructure Control and

Manager (ICM), as well as different actors (e.g., business applications, as well as Customers, Ap-

plication Developers, and Administrators) that are designing, implementing, and deploying LSO

functionality. The model elements (e.g., classes, attributes, relationships, and operations) defined

in this model are not specific to Carrier Ethernet, and are intended to define a comprehensive

abstract model from which more specific models can be extended.

The MCM is built on modeling best practices (e.g., [5][6][8]), and uses a number of software

patterns (e.g., [2][3][4]) to provide an extensible framework that can support model-driven engi-

neering [9] as well as the needs of DevOps-inspired automation. It defines concepts and functions

that can be represented to define data exchanged at all seven of the Interface Reference Points

defined in [1].

Put another way, the MCM serves as a common lexicon for all MEF models. It defines a set of

concepts and terms, and relationships between them, in an object-oriented information model. This

makes it independent of any specific architectural paradigm (e.g., resource- or service-oriented

architectures).

As MEF models evolve, and define new concepts, those concepts will be added to the MCM if

they can be used by multiple teams.

This document normatively includes the content of the following Papyrus UML files as if they

were contained within this document from the MEF GitHub Repository (https://github.com/MEF-

GIT/MEF-Common-Model): MCM.di, MCM.notation, and MCM.uml.

https://github.com/MEF-GIT/MEF-Common-Model
https://github.com/MEF-GIT/MEF-Common-Model

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 3

3 Terminology and Abbreviations

This section defines the terms used in this document. In many cases, the normative definitions to

terms are found in other documents. In these cases, the third column is used to provide the refer-

ence that is controlling, in other MEF or external documents.

Term Definition Reference

Abstract Class
An abstract class is a class that cannot be directly instan-

tiated. It can have abstract or concrete subclasses.

THIS

DOCUMENT

Abstraction

Abstraction is the process of focusing on the important

characteristics and behavior of a concept, and ignoring

less important characteristics and behavior.

THIS

DOCUMENT

Class

A class is a template for defining a specific type of object

that exhibits a common set of characteristics and behav-

ior.

THIS

DOCUMENT

Classification

Theory

The principles that govern the organization of objects

into groups according to their similarities and differences

or their relation to a set of criteria.

THIS

DOCUMENT

Concrete Class

A concrete class is a class that can be directly instanti-

ated. Once a class has been defined as concrete in the hi-

erarchy, all of its subclasses are required to be concrete.

THIS

DOCUMENT

Customer

A Customer is the organization purchasing, managing,

and/or using Connectivity Services from a Service Pro-

vider. This may be an end user business organization,

mobile operator, or a partner network operator.

[14]

Data Model

A data model is a representation of concepts of interest to

an environment in a form that is dependent on data repos-

itory, data definition language, query language, imple-

mentation language, and/or protocol (typically, but not

necessarily, all five).

THIS

DOCUMENT

Information

Model

An information model is a representation of concepts of

interest to an environment in a form that is independent

of data repository, data definition language, query lan-

guage, implementation language, and protocol.

THIS

DOCUMENT

https://www.merriam-webster.com/dictionary/criteria

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 4

Term Definition Reference

LSO (Lifecycle

Service Orches-

tration)

Open and interoperable automation of management oper-

ations over the entire lifecycle of Layer 2 and Layer 3

Connectivity Services. This includes fulfillment, control,

performance, assurance, usage, security, analytics and

policy capabilities, over all the network domains that re-

quire coordinated management and control in order to de-

liver the service.

MEF 55 [1]

LSO RA (LSO

Reference Archi-

tecture)

A layered abstraction architecture that characterizes the

management and control domains and entities, and the in-

terfaces among them, to enable cooperative orchestration

of Connectivity Services. Note that in this document, co-

operative orchestration is NOT limited to only Connec-

tivity Services, and may include other services as well.

MEF 55 [1]

Metadata

Metadata is a class that contains prescriptive and/or de-

scriptive information about the object(s) to which it is at-

tached. While metadata can be attached to any infor-

mation model element, this document only considers

metadata object instances attached to class instances and

relationships.

THIS

DOCUMENT

Model Element

An element of a model. For the purposes of this docu-

ment, this refers to a set of classes, attributes, operations,

constraints, and/or relationships.

THIS

DOCUMENT

Object An instance of a (concrete) class.
THIS

DOCUMENT

Pattern

A pattern describes a named, generic, reusable solution to

a problem that applies to a particular context. A pattern is

not a finished design, but rather, is a reusable template

that defines a set of objects, and their interactions, that

can be adapted to meet the context-specific needs re-

quired to solve a problem.

[2] [12]

Relationship
For the purposes of this document, a relationship can be

any type of association, aggregation, or composition.

THIS

DOCUMENT

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 5

Term Definition Reference

Role

The Role-Object pattern enables an object to adapt to the

needs of different applications and contexts by transpar-

ently attaching and/or removing Role Objects. Each Role

Object defines a set of responsibilities that the object has

to play in that client’s context. Each context may be its

own application, which therefore gets decoupled from

other applications. The Role-Object pattern is imple-

mented in the MCM by aggregating Role objects, which

are defined as a type of Metadata, to other objects (to en-

force the separation of defining an object vs. defining re-

sponsibilities that the object has to play).

[3]

Service Provider

The organization providing Ethernet Service(s). Note that

in this document, as well as in [1], the (Service Provider)

organization is NOT limited to providing only Ethernet

Services.

MEF 10.3 [13]

Unified Modeling

Language (UML)

The objective of UML is to provide system architects,

software engineers, and software developers with tools

for analysis, design, and implementation of software-

based systems as well as for modeling business and simi-

lar processes.

OMG UML

2.5 [11]

Whole-Part Rela-

tionship

A whole-part relationship is one in which one set of enti-

ties aggregates another set of entities. In such a relation-

ship, three objects are created (the entity doing the aggre-

gation, the set aggregated entities, and the combination of

the aggregating entity and its aggregated entities).

More formally, a whole-part relationship is a partial or-

dering that is reflexive, transitive, and anti-symmetric

(i.e., everything is a part of itself, any part of any part of

an entity is itself a part of that entity, and two distinct en-

tities cannot be part of each other).

Various; see

for example

Stanford Ency-

clopedia of

Philosophy

Table 1. Terminology and Abbreviations

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 6

4 Compliance Levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY",

and "OPTIONAL" in this document are to be interpreted as described in BCP 14 (RFC 2119 [7],

RFC 8174 [18]) when, and only when, they appear in all capitals, as shown here. All key words

must be in bold text.

Items that are REQUIRED (contain the words MUST or MUST NOT) are labeled as [Rx] for

required. Items that are RECOMMENDED (contain the words SHOULD or SHOULD NOT)

are labeled as [Dx] for desirable. Items that are OPTIONAL (contain the words MAY or OP-

TIONAL) are labeled as [Ox] for optional.

5 Numerical Prefix Conventions

This document uses the prefix notation to indicate multiplier values as shown in Table 2.

Decimal Binary

Symbol Value Symbol Value

k 103 Ki 210

M 106 Mi 220

G 109 Gi 230

T 1012 Ti 240

P 1015 Pi 250

E 1018 Ei 260

Z 1021 Zi 270

Y 1024 Yi 280

Table 2. Numerical Prefix Conventions

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 7

6 Introduction
The Lifecycle Service Orchestration Reference Architecture (LSO RA) [1] describes the control

and management domains, and the main functional management entities contained in those do-

mains, that enable cooperative LSO capabilities. The architecture also defines the Interface Ref-

erence Points (IRPs), which are the logical points of interaction between specific functional man-

agement entities. These IRPs are specified in part by Interface Profiles and implemented by

APIs. The High Level LSO Reference Architecture is shown in Figure 1. This is a functional ar-

chitecture, and hence, does not describe how the functional management entities are imple-

mented (e.g., single vs. multiple instances). Rather, it identifies functional management entities

that provide logical functionality as well as the points of interaction among them.

This specification uses UML (Unified Modeling Language) to describe the salient characteristics

and behavior of entities that are important to the managed environment. These entities, and the

relationships between them, describe concepts used by different functional components, such as

the Service Orchestration Functionality (SOF) and the Infrastructure and Control Manager (ICM),

as well as different actors (e.g., business applications, as well as Customers, Application Develop-

ers, and Administrators) that are designing, implementing, and deploying LSO functionality. Fig-

ure 1 shows three different domains (Service Provider, Partner, and Customer).

Figure 1. The Lifecycle Service Orchestration Reference Architecture

The scope of the MCM is to model concepts and functions as seen from the Service Provider’s

point-of-view. This includes interactions between the Service Provider and its Partners, as well as

interactions between the Service Provider and its Customers. Hence, the MCM is potentially rele-

vant for all seven IRPs defined in MEF 55.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 8

This document is intended for developers and users that need the formalism that an information

model provides. An information represents concepts, along with their relationships and semantics,

to help specify an extensible and structured, shareable, information repository.

The remainder of this document defines the MCM. First, a high-level Overview of the MCM is

provided in section 7.1. This section also includes brief, informative text to enable the reader to

understand important design decisions that were taken in the development of the MCM. Then,

section 7.2 defines the top of the MCM class hierarchy (including how the three main hierarchies

of the MCM interact with each other), while sections 7.3 - 7.9 define the rest of the MCMEntity

class hierarchy. Finally, sections 7.10 and 7.11 define the MCMInformationResource and

MCMMetaData class hierarchies, respectively.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 9

7 MEF Core Model (MCM)

The MCM is a UML object-oriented information model that represents key functions and concepts

in the Service Provider and Partner Domains of MEF 55 [1]. As such, it also includes key concepts

and functions from other domains that are manipulated by the Service Provider and Partner do-

mains (e.g., “Customer”).

7.1 Overview of the MCM

The design of the MCM is explained by summarizing the purpose and semantics of the top-level

classes of the MCM. This results in three sub-hierarchies, one for each subclass of the

MCMRootEntity class, which is the top of the model. Subsequent subsections will then describe

each sub-hierarchy in more detail.

The MCM uses the following rules to define the names of its model elements:

• Naming rules are as follows:

[R1] Class names MUST be in UpperCamelCase (i.e., the first letter is capitalized).

Class names MUST NOT begin with any non-alphabetic character, and no

spaces are allowed.

[R2] Attribute names MUST be in lowerCamelCase (i.e., the first letter is lower

case); attribute names MUST NOT begin with any non-alphabetic character

except for the underscore, and no spaces are allowed. Note that attribute names

that begin with an underscore are private attributes that reference an end of an

association.

[R3] Relationship names MUST be in UpperCamelCase (i.e., the first letter is capi-

talized). Relationship names MUST NOT begin with any non-alphabetic char-

acter, and no spaces are allowed.

[R4] Each class MUST be prefixed with “MCM”. For example, RootEntity is named

“MCMRootEntity”. This serves two purposes. First, it helps provide context to

textual descriptions of these model elements. Second, it enables MCM model

elements, patterns, and approaches to be compared to those of other SDOs and

consortia unambiguously.

[R5] Each attribute MUST be prefixed with “mcm”. For example, the attribute

“commonName” in the MCMRootEntity class is named “mcmCommon-

Name”. If an attribute starts with an underscore, then “mcm” immediately fol-

lows the underscore (e.g., _mcmARef).

[R6] Each relationship MUST be prefixed with “MCM”. For example, the aggrega-

tion “EntityHasMetaData” is named “MCMEntityHasMCMMetaData”.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 10

[R7] All association classes MUST be suffixed with the word “Detail”. For example,

the association class for the above example is named “MCMEnti-

tyHasMCMMetaDataDetail”. This makes it obvious that a class is an associa-

tion class.

• Regarding interoperability with concepts from other SDOs:

[R8] All classes that model a concept from another SDO and change the model of

that SDO (e.g., to be able to be used in the MCM) MUST be prefixed with

“MCMMEF”. For example, the concept of a Descriptor from ETSI NFV is

named “MCMMEFDescriptor”.

[R9] All classes that model a concept from another SDO exactly as it is defined in

that SDO MUST be prefixed with “MCM”, followed by the name of the SDO,

followed by the class name. For example, if an SDO named Foo defined a class

named Bar, and MCM imported this concept with no changes, it would be

named MCMFooBar.

A note about associations, aggregations, compositions, and their multiplicity. The UML guidelines

do not specify in detail what valid multiplicities are. In the MCM, multiplicities are important, in

order to provide a robust foundation for code generation, as well as to accommodate the future

incorporation of ontologies Therefore:

[O1] Association relationships MAY have a 0..* - 0..* multiplicity. This is because

they represent a generic dependency, and one end of the association may not be

instantiated yet.

[D1] Aggregation and composition relationships SHOULD NOT have a 0..* - 0…*

[D2] multiplicity. This is because both aggregations and compositions are a type of

whole-part relationship. Ontologically, it is impossible to talk about a “whole”

when no “parts” exist (or vice-versa). If there is the possibility of not instantiat-

ing the relationship, then the cardinality of the aggregate (or composite) part

SHOULD be 0..1, where the 0 signifies that the relationship has not yet been

instantiated.

[D3] Relationships whose owner (i.e., the source of the relationship) is a value greater

than 0 (e.g., 1 or 1..* or 3..7) SHOULD have a part multiplicity of at least 1.

This is because one side of the relationship MUST exist, and it makes no sense

to have one side of a relationship exist while the other side doesn’t.

7.1.1 The Top Portion of the MCM

Figure 2 shows the top of the MCM class hierarchy (MCMRootEntity), the first level of inheritance

(consisting of three subclasses), and relationships with their association classes.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 11

Figure 2. The Top Portion of the MCM Class Hierarchy

MCMRootEntity defines the top of the MCM class hierarchy. Its characteristics and behavior are

thus inherited by all MCM classes. MCMRootEntity defines a set of attributes that enable all ob-

jects to be unambiguously named, described, and identified in a managed environment. Note that

multiple inheritance is disallowed in MEF models. Its full definition is defined in Section 7.2.

Figure 2 shows the three subclasses of MCMRootEntity: MCMEntity (see section 7.3), MCMIn-

formationResource (see section 7.10), and MCMMetaData (see section 7.11). The limit of three

subclasses simplifies the understanding of the model, and uses classification theory to ensure that

objects are organized into groups according to a set of criteria (e.g., their similarities and/or dif-

ferences).

The three subclasses create three parallel class hierarchies that can interact with each other. For

example, object instances from the MCMMetaData class hierarchy are designed to be attached to

object instances from the other two class hierarchies. In addition, classes from the MCMInfoRe-

source class hierarchy are inherently related to classes from the MCMEntity class hierarchy.

The three class hierarchies are described as follows:

1) MCMEntity, which is the superclass for objects of interest that are important to

the managed environment, and which have a separate and distinct existence.

These objects can play one or more business functions, and can be managed or

unmanaged (using digital mechanisms). Examples include Chassis (unmanaged)

and Product, Service, and Resource (all three are managed).

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 12

2) MCMInformationResource, which is information that is required to describe

concepts owned by other Entities, but which is not an inherent part of the Entity

being described. For example, an IPAddress is an important piece of data, but it

does not control its own lifecycle; rather, its lifecycle is controlled by another Re-

source (e.g., a DHCPServer). The use of MCMInformationResource enables the

IPAddress (in this example) to be represented and associated with the correct Re-

source responsible for its lifecycle.

3) MCMMetaData, which is an object that defines descriptive and/or prescriptive

information about the MCMEntity or MCMInformationResource objects that it is

attached to. Examples include versioning information of an object, as well as best

common practice information and context-specific usage guidelines.

Figure 2 also shows three aggregations, called MCMEntityHasMCMInfoResource (see section

7.4), MCMEntityHasMCMMetaData (see section 7.4.1), and MCMInfoResourceHas-

MCMMetaData (see section 7.10.1).

The first aggregation defines the set of MCMInformationResource objects that are associated with

a given set of MCMEntities. The second and third aggregations define the set of MCMMetaData

objects that can be attached to a particular MCMEntity and a given MCMInformationResource,

respectively. All three of these aggregations are implemented as association classes; this enables

the Policy Pattern (see Figure 3) to be used to define policy rules that constrain which part objects

(i.e., MCMInformationResource for the first aggregation, and MCMMetaData for the second and

third) are attached to which MCMEntity (first or second aggregation) or MCMInformationRe-

source (third aggregation). An example of the Policy Pattern is shown in Figure 3. Note that

MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and in-

tent policy rules.

All MCM association classes are rooted from a single superclass, called MCMRelationshipParent

(which in turn is subclasses from MCMEntity); this simplifies both the design of the association

classes and their implementation. The MCMPolicyStructure, which is a subclass of MCMPolicy-

Object (see section 7.8.3), is the superclass of all policies defined in the MEF Policy Driven Or-

chestration project (i.e., imperative, declarative, and intent policies). The above diagram shows

that an object instance of the appropriate concrete subclass of MCMPolicyStructure is related to

class-level attributes and operations of an object instance of the MCMEntityHasMCMMetaDa-

taDetail association class.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 13

Figure 3. The Policy Pattern Applied to MCMEntityHasMCMMetaDataDetail

7.1.2 MCMEntity Hierarchy

The purpose of the MCMEntity is to represent the characteristics and behavior of concepts that are

important to the managed environment. An MCMEntity defines a key concept in the managed

environment, and has a separate and distinct existence (i.e., an MCMEntity is not just a collection

of attributes or an abstraction of behavior).

The MCMEntity hierarchy is the set of subclasses of the MCMEntity class that define the exter-

nally visible characteristics and behavior of the system in more detail. The MCMEntity class is

defined in Section 7.4. The main classes in this hierarchy include MCMUnManagedEntity,

MCMDomain, MCMBusinessObject, MCMManagedEntity, and MCMParty. See Sections 7.5.1,

7.6, 7.7, 7.8, and 7.9, respectively, for more information.

7.1.3 MCMInformationResource Hierarchy

The purpose of the MCMInformationResource hierarchy is to represent information and concepts

needed by one or more managed entities that are not inherent to those managed entities. It is shown

in Figure 4.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 14

Figure 4. The Top Portion of the MCMInformationResource Hierarchy

Consider the concepts of a networking device and an IP Address. The networking device may be

modeled in different abstraction levels, ranging from a black box to a detailed model that shows

its constituent manageable components. In either case, an IP Address may be assigned to the net-

working device (or a component of the networking device). While the IP Address represents im-

portant information that is managed, the IP Address is not an inherent part of the networking de-

vice. IP Addresses are generated by a different component in the system being managed, and then

assigned to the networking device.

The MCMInformationResource hierarchy defines concepts owned by a set of MCMEntities that

is also needed by a management system, but which is not an inherent part of the MCMEntity being

modeled. Hence, it must be treated as a separate object. In the above example, the IP Address is

defined as a subclass of MCMNetworkAddress, which in turn is a subclass of MCMInformation-

Resource, and attached to the networking device using the MCMInformationResourceHasMe-

taData aggregation.

Note that Figure 4 shows two aggregations, called MCMInformationResourceHasMetaData and

MCMEntityHasMCMInfoResource. The first enables an MCMInformationResource to optionally

aggregate MCMMetaData. The second enables an MCMEntity to be associated with a set of

MCMInformationResources. They are discussed in sections 7.11 and 7.10, respectively

7.1.4 Top Portion of the MCMMetaData Hierarchy

The purpose of MCMMetaData is to describe and/or prescribe information about MCMEntity and

MCMInformationResource objects. Examples include describing best current practices of using

an object, instructing which version(s) of an object to use for a given situation, and to define how

to manage the behavior of the system and its constituent components. This makes MCMMetaData

objects different than both MCMEntities (whose purpose is to describe the constituent components

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 15

of a managed system) as well as MCMInformationResource (whose purpose is to describe infor-

mation that is not an inherent part of a managed entity, but which nevertheless is important infor-

mation for the system being managed and is governed by an MCMEntity).

More formally, in the MCM, metadata may describe and/or prescribe information about the ob-

ject(s) to which it is attached. This is done by “attaching” the metadata object to another object

using a relationship, which is typically an aggregation (i.e., a type of “whole-part” relationship).

This can be thought of as augmenting the description of that object, and/or attaching management

and control information, to that object. Multiple metadata objects may be attached to any single

object.

There is often debate as to whether something is metadata or not. In the MCM, a very simple rule

is used to make this decision:

[D4] Metadata SHOULD be used to describe a concept that is not part of the inherent

characteristics or behavior of an object.

For example, suppose we were designing a class to represent a Person. An attribute called birthdate

would be reasonable, since it is a characteristic of all People. In contrast, an attribute called hair-

Color is not, since a Person may not have any hair; this could instead be conveyed using metadata.

Finally, an attribute called socialSecurityNumber is a poor design for a number of reasons, includ-

ing (1) social security numbers are typically used only in the US, and (2) there are a number of

complex geo-political reasons involving whether a person living in the US even has a social secu-

rity number.

A much better design is to realize that a social security number is one way to identify a person in

a given context. Hence, a more scalable approach would be to define an association between Per-

son and another class, called (for example) PersonalIdentifier. Note that this enables different types

of identifiers (e.g., driverLicense, nameAndPassword, biometricData) to be defined a subclasses

of PersonalIdentifier. Since each of these have different metadata (e.g., when they should be used),

metadata could be attached to each type of identifier.

Figure 5 shows that zero or more metadata objects may be attached to zero or more Entity or

InformationResource objects. These are separate aggregations, because the semantics of these re-

lationships are different in nature. Note that an aggregation defines a whole-part relationship; this

means that three objects are created (the entity that is aggregating metadata, the metadata, and the

combination of the entity and its metadata). These relationships are discussed in sections 7.10.1

and 7.11.1, respectively.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 16

Figure 5. The Top Portion of the MCMMetaData Hierarchy

Metadata is crucial to designing and implementing model-driven software. Most information mod-

els either do not specify a metadata hierarchy, or define metadata as embedded within a class. The

MCM has chosen to define a separate metadata hierarchy, because:

1) Metadata that is defined within a class makes that metadata available only to that

class; hence, if the same concept (e.g., versioning, or periods of time within which

something is applicable) pertains to other classes, the metadata is captured as du-

plicate model elements (e.g., classes, attributes, operations, constraints, and/or re-

lationships). This creates maintenance issues, as each metadata model object

needs to be separately managed.

2) Creating a metadata hierarchy enables a family of objects to be reused to repre-

sent common information and behavior that apply to other objects. For example,

if the concept of a software version is needed, then defining version as metadata

enables any object in the entire model to use a consistent definition of software

version.

[O2] Metadata SHOULD be optional, since it is used to describe or prescribe the be-

havior and semantics of another object.

In the MCM, a separate class hierarchy supports attaching a set of metadata objects that can be

optionally attached to other objects as needed (e.g., depending on context).

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 17

Referring to Figure 5:

• MCMRole is an abstract class, and specializes MCMMetaData. It represents a set

of characteristics and behaviors that an object takes on in a particular context.

This enables an object to adapt to the needs of different clients through transpar-

ently attached role objects. Please see section 7.11.2.1.

• MCMPartyRole is an abstract class, and specializes MCMRole. It represents a set

of unique behaviors played by an MCMParty in a given context. Please see sec-

tion 7.11.2.2.

• MCMPolicyRole is an abstract class, and specializes MCMRole. It represents a

set of unique behaviors played by an MCMPolicyObject in a given context.

Please see section 7.11.3.

The following classes are not shown in Figure 5 in order to keep the figure simple. Please see the

appropriate sections for each class for more detail.

• MCMCustomer is a concrete class, and specializes MCMPartyRole. It represents a partic-

ular type of MCMPartyRole that defines a set of people and/or organizations that buy,

manage, or use MCMProducts from an MCMServiceProvider. The MCMCustomer is fi-

nancially responsible for purchasing an MCMProduct. The MCMCustomer is the

MCMPartyRole that is purchasing, managing, and/or using Services from an

MCMServiceProvider. This definition is based on the definition from [15]. Please see

section 7.11.2.3.

• MCMServiceProvider is a concrete class, and specializes MCMPartyRole. It represents a

particular type of MCMPartyRole that provides MCMProducts. This specifically includes

MCMServices. This definition is based on the definition from [1]. Please see section

7.11.2.4.

• MCMAccessProvider is a concrete class, and specializes MCMPartyRole. It represents a

particular type of MCMPartyRole that enables MCMPartyRoles (typically MCMCustom-

ers) to gain entrance to a network (e.g., the Internet), by using an MCMProduct. This spe-

cifically includes MCMServices. Please see section 7.11.2.5.

• MCMPartner is a concrete class, and specializes MCMPartyRole. It represents a particu-

lar type of MCMPartyRole that provides MCMProducts and MCMServices to the

MCMServiceProvider in order to instantiate and manage MCMService elements, such as

MCMServiceComponents, external to the Service Provider’s Domain. This definition is

based on the definition from [1]. Please see section 7.11.2.6.

• MCMCapability is an abstract class, and specializes MCMMetaData. It represents a set of

features that are available to be used from an Entity. Each feature may, but does not have

to, be used. Please see section 7.11.6.1.

• MCMMEFNetworkFunction is a concrete class, and specializes MCMCapability. It gen-

eralizes the concept of an ETSI NFV NetworkFunction, and represents the features and

behavior of an MCMManagedEntity that may be used for a given set of external inter-

faces while in a particular state. It may specify attributes and operations, as well as define

nested MEFNetworkFunctions. It may also enumerate the actors that use it. Please see

section 7.11.6.2.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 18

• MCMMEFDescriptor is an abstract class, and specializes MCMCapability. It generalizes

the concept of an ETSI NFV Descriptor. For example, metadata-driven technologies do

not use metadata at design time only; they depend on changing metadata to change be-

havior. The ETSI NFV Descriptor is a static, design time collection of metadata. In con-

trast, the MCMMEFDescriptor is metadata that can be used at design time as well as

runtime. Please see section 7.11.6.3.

• MCMPolicyMetaData is an abstract class, and specializes MCMMetaData. It represents a

set of features and/or behavior that apply to a particular type of MCMPolicyObject (see

section 7.11.4).

• MCMGeospatialMetaData is an abstract class, and specializes MCMMetaData. It defines

a type of metadata that provides explicit or implicit geographic information. It is defined

in ISO 19115:2013 “Geographic Information – Metadata” [14]. Please see section 7.11.5.

7.1.5 MCM Compliance

The MCM defines all common concepts that other models can use.

[D5] In principle, users of a model SHOULD be able to find the basic definitions of

all concepts that their project needs defined in the MCM.

[D6] If a required concept is not defined in the MCM, then that concept SHOULD be

added to either the MCM (if it is generally applicable to other models), or to a

model derived from the MCM; this enables the MCM, and its derived models,

to continually grow and serve the common needs of the MEF modeling commu-

nity.

[D7] New concepts that are added to the MCM SHOULD be in the form of a small

number of key model elements. Entire models SHOULD NOT be imported into

the MCM, as they will likely not be generally applicable to other projects.

For example, if Policy was not defined in the MCM, and a project needed to use Policy, then that

project should request that Policy be added to the MCM. This does not mean that the entire Policy

model is added to the MCM; rather, a small set of model elements are added to the MCM hierarchy

so that a common Policy model can be built. This is how Policy is currently defined in the MCM.

Note that most projects will need to reference multiple model elements. For example, the Sonata

Ordering project will need to use classes, attributes, and relationships from at least the MCMUn-

ManagedEntity hierarchy (e.g., locations and physical entities), MCMManagedEntity hierarchy

(e.g., Product, and possible Service, as well as their associated Definitions), MCMParty hierarchy

(e.g., people and organizations), MCMBusinessObject hierarchy (e.g., orders and order items), and

MCMMetaData hierarchy.

[D8] If a project needs to add model elements (e.g., classes, attributes, relationships,

operations, constraints) to the MCM, it SHOULD conform to the principles in

this section.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 19

The following sections define MCM model elements. Classes are not individually designated as

mandatory or optional, because the set of classes that are implemented depends on the application

being realized.

[R10] If a class is implemented, then any mandatory model elements defined by that

class MUST also be implemented.

[R11] Requirement [R10] means that any inherited model elements defined by a class

MUST also be implemented. In particular, overriding attributes or operations

MUST NOT be done.

Care should be taken in defining relationships. Relationships are inherited by the classes partici-

pating in a relationship.

[D9] Subclasses that inherit relationships from their parent classes SHOULD NOT

define a relationship that has the same behavior as inherited relationships. While

this also applies to attributes and operations, it is much more common in practice

to see this requirement not followed.

7.1.6 Alignment With Other SDOs

The ONF TAPI model currently has a very well developed resource model. MCM is committed to

using this model (perhaps with suitable modifications) over time. This effort will be mostly com-

plete by version 2 of this model.

Ideally, an object-oriented information model can model a domain regardless of how it is struc-

tured technologically (e.g., using a resource- or service-oriented view). The MCM addresses this

through the use of established design patterns; this enables the modeler to focus on what is being

represented, as opposed to how it is represented (e.g., client-server vs other mechanisms).

At this time, the ONF TAPI model is the only information model being considered for alignment.

Alignment with the TMF API data model is slated for work in a future MCM release.

7.1.7 Alignment with Existing MEF Work

The MEF is currently proceeding with multiple modeling projects. Some of these predate the

MCM. An overarching goal of the MCM is to incorporate these models without invalidating them.

There are three cases to consider: (1) existing models have no superclasses, (2) existing models

have superclasses defined in an external model, such as ONF TAPI, and (3) an existing modeling

project does not use an MCM pattern, and hence, contains objects that do not directly map to

MCM.

The first case is straightforward. MCM, or a model derived from MCM, will define a superclass

for all classes in existing MEF models that have no superclasses. This ensures that all MEF models

share a common namespace, and can inherit key attributes, such as an objectID, a name, and a

description. Note that this case also covers the case of an existing model defining its own “root

class”, since that “root class” will inherit from one of MCM’s three subclasses (MCMEntity,

MCMInformationResource, or MCMMetaData).

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 20

The second case is more complex, since the existing superclass lives in another model. The current

ONF TAPI model does not have a single superclass, which means that many of its classes do not

have superclasses. Hence, for ONF TAPI specifically, this means ensuring that all classes used

from the ONF TAPI model by a MEF project have a superclass defined either in the MCM, or in

a model derived from the MCM.

The third case is the most complex. For example, ONF TAPI does not use the composite pattern,

and instead, uses recursive relationships. This either requires a model mapping (i.e., the ONF TAPI

class with a recursive relationship is mapped to an MCM composite pattern) or, for special cases,

ignoring the MEF pattern and simply ensuring that the ONF TAPI class inherits from the MCM

(or a model derived from the MCM). That being said, the default approach of MCM is to use the

composite pattern.

Future alignment with the TMF API data model is for further analysis and work in a future release

(note, the TMF API data model is different than a data model produced by the TMF SID; only the

TMF API data model is being currently considered). TMF alignment is harder than TAPI align-

ment due to significant structural differences between the TMF API data model and the MCM –

this causes significant semantic differences to be taken into account. Examples include:

• There is no single root class, so some classes have no superclass

• There is no common use of inheritance for key attributes, such as id (rather, they are de-

fined in a class-specific basis)

• There are significant differences in the inheritance hierarchies

• There are significant differences in patterns used

• There is no metadata class, let alone a metadata class hierarchy, in the TMF models

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 21

7.2 MCMRootEntity Class Definition

MCMRootEntity is an abstract class. It is the top of the MEF Core Model (MCM) class hierarchy,

and specifies a set of attributes and relationships that are common to all other classes in the MCM.

The attributes of MCMRootEntity define a common name, a description, and an objectID for all

MEF classes. The objectID is defined modularly, so different namespaces can be defined and in-

teroperate. The composite object ID is defined using two class attributes: mcmObjectIDContent

and mcmObjectIDFormat. This enables all instances of all objects to be uniquely identified. In the

MCM, all classes are rooted. This simplifies implementation.

Table 3 defines the attributes of the MCMRootEntity class.

Attribute Name Manda-

tory?

Description

mcmCommonName

: String[0..1]

No This is a string, and represents a user-friendly identifier of
an object. It is a name by which the object is commonly
known in some limited scope (such as an organization)
and conforms to the naming conventions of the scope in
which it is used.

[R12] The mcmCommonName attribute MUST NOT be

used as a naming attribute (i.e., to uniquely identify

an instance of the object).

[D10] If an object does not have a value for the mcmCom-

monName attribute, then an empty string

SHOULD be used.

mcmDescription:

String[0..1]

No This is a string, and defines a textual free-form description
of the object.

[D11] If an object does not have an mcmDescription at-

tribute, then an empty string SHOULD be returned.

mcmObjectIDCon-

tent: String[1..1]

Yes The mcmObjectIDContent attribute is a string, and con-
tains the value of the objectID. The mcmObjectIDFormat
attribute defines the type of identification that is being
used for this object (e.g., URI, GUID, key, or FQDN). The
combination of mcmObjectIDContent and mcmObjectID-
Format enables the data model developer to define their
own format and content to represent a unique ID of an
object.

[R13] The value of this attribute MUST NOT be a NULL

or EMPTY string.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 22

mcmObjectIDFor-

mat: String[1..1]

Yes The mcmObjectIDFormat attribute is a string, and con-
tains the format used by the objectIDContent attribute
(e.g., URI, GUID, key, or FQDN). The mcmObjectIDContent
attribute is a string, and contains the value of the ob-
jectID. The combination of mcmObjectIDContent and
mcmObjectIDFormat enables the data model developer
to define their own format and content to represent a
unique ID of an object.

[R14] The value of this attribute MUST NOT be a NULL

or EMPTY string.

Table 3. Attributes of the MCMRootEntity Class

Table 4 defines the operations for the MCMRootEntity class. Note that there are no individual

getters and setters for the mcmObjectIDContent and mcmObjectIDFormat attributes, since they

are used together as a tuple.

Operation Name Description

getMCMCommonName() :

String[1..1]

This operation returns this object's mcmCommonName
attribute as at String. It takes no input parameters.

[D12] If the mcmCommonName attribute does not have a

value, then the getMCMCommonName operation

SHOULD return an empty String.

setMCMCommonName(

in inputString : String[1..1])

This operation sets the current value of the mcmCommon-
Name attribute of this object. It takes a single String pa-
rameter, which contains the new value of the mcmCom-
monName attribute.

[D13] An empty string SHOULD be used to define an

empty value for the mcmCommonName attribute.

getMCMObjectID() :

String[2..2]

This operation returns this object's mcmObjectID attribute
as a String of multiplicity [2] The first element contains the
mcmObjectIDContent attribute, and the second contains
the mcmObjectIDFormat attribute. This operation takes
no input parameters.

[R15] If either returned parameter is NULL or an empty

string, then an exception MUST be thrown.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 23

setMCMObjectID(

in objectContent :

String[1..1],

in objectFormat: String[1..1])

This operation sets the current value of the value of the
mcmObjectID. The first input parameter is a String, and
defines the new value of the mcmObjectIDContent attrib-
ute. The second input parameter is a String, and defines
the new value of the mcmObjectIDFormat attribute.

[R16] Both parameters MUST NOT be NULL or EMPTY

strings.

getMCMDescription() :

String[1..1]

This operation returns this object's mcmDescription attrib-
ute as at String. It takes no input parameters.

[D14] If the mcmDescription attribute does not have a

value, then the getMCMDescription operation

SHOULD return an empty String.

setMCMDescription(

in inputString : String[1..1])

This operation sets the current value of the mcmDescrip-
tion attribute of this object. It takes a single String param-
eter, which contains the new value of the mcmDescription
attribute.

[D15] An empty string SHOULD be used to define an

empty value for the mcmCommonName attribute.

Table 4. Operations of the MCMRootEntity Class

Note that there are no relationships (i.e., associations, aggregations, or compositions) defined

that involve RootEntity. This is because any such relationships would apply to the rest of the

MCM classes, and in doing so, would violate many software architecture principles.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 24

7.3 The MCMEntity Hierarchy

MCMEntities represent the characteristics and behavior of the system being managed, and have a

separate and distinct existence.

The MCMEntity class has five abstract subclasses, as shown in Figure 6.

Figure 6. MCMEntity Subclasses

Table 5 defines the purpose of this hierarchy, and aligns them to MEF 55 [1]. The purpose of the

MCMEntity hierarchy is to model the major different types of MCMEntities that are of interest to

the managed environment. From a classification theory point-of-view, this set of subclasses rep-

resent the next level of detail in categorizing what an MCMEntity is.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 25

Name of Class Function Relation to MEF 55

MCMEntity

Defines the set of objects that are

important to the managed environ-

ment

Any object that is monitored

or configured is typically a

subclass of MCMEntity.

MCMUnMan-

agedEntity

Represents objects that are im-

portant to the managed environ-

ment, but which have no inherent

ability to digitally communicate

and be managed. Examples include

chassis, location, and cable duct.

Not mentioned; needed for

inventory and planning

MCMDomain

A collection of MCMEntities that

share a common purpose. In addi-

tion, each constituent MCMEntity

in an MCMDomain is both

uniquely addressable and uniquely

identifiable within that MCMDo-

main.

MCMDomain represents

scope of control. It is the su-

perclass of MCMManage-

mentDomain, which is used

to apply policy to MCMMan-

agementEntities. Applicable

to all MEF55 IRPs.

MCMManagedEntity

Represents objects that have the

following common semantics: (1)

each has the potential to be man-

aged; (2) each can be associated

with at least one Management-

Domain; (3) each is related to

Products, Resources, and/or Ser-

vices of the system being managed.

Superclass of Product, Re-

source, and Service, as well

as templates for their creation

and management. Applicable

to all MEF55 IRPs.

MCMBusinessObject

Represents business concepts, such

as Orders and OrderItems

Enables Business Applica-

tions to communicate with

other functional components

of the LSO RA to order

Products, Services, and Re-

sources

MCMParty

Represents either an individual per-

son or a group of people that have

a set of (possibly changeable) re-

sponsibilities and functions.

Superclass of Person and Or-

ganization. Applicable to

representing roles that people

or organizations play.

Table 5. Functions of the MCMEntity Class and its Subclasses

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 26

7.4 MCMEntity Class Definition

This is an abstract class, and specializes MCMRootEntity. It represents objects that are important

to the managed environment. Entities represent the characteristics and behavior of the system be-

ing managed, and have a separate and distinct existence. An MCMEntity is not just a collection of

attributes or an abstraction of behavior. The subclasses of MCMEntity may play one or more busi-

ness functions, and may be managed or unmanaged (using digital mechanisms). Examples include

Chassis, Rack, and CableDuct (unmanaged) and Product, Service, and Resource (managed).

This class does not currently define any attributes. Its significance is from an ontological perspec-

tive, as it defines a type of class that is different than its two sibling classes. This is realized by the

presence of relationships.

Table 6 defines the operations for this class.

Operation Name Description

getMCMMetaDataList() :

MCMMetaData[1..*]

This operation returns the set of MCMMetaData objects

that are currently attached to this particular MCMEntity

object. The return value is an array of one or more ob-

jects of type MCMMetaData. This operation follows all

instances of the MCMEntityHasMCMMetaData aggrega-

tion (i.e., from this MCMEntity object to each

MCMMetaData object attached to it), and returns the as-

sociated MCMMetaData objects as an array.

[D16] If this object does not have any attached

MCMMetaData, then a NULL MCMMetaData

object SHOULD be returned by the

getMCMMetaDataList operation.

setMCMMetaDataList(

in attachedMetaDataList :

MCMMetaData[1..*])

This operation defines the complete set of

MCMMetaData objects that will be attached to this par-

ticular MCMEntity object. This operation takes a single

input parameter, called attachedMetaDataList, which is

an array of one or more MCMMetaData objects. This op-

eration creates a set of aggregations between this particu-

lar MCMEntity object and the set of MCMMetaData ob-

jects identified in the input parameter (i.e., if there is an

array of 5 MCMMetaData objects, then 5 aggregations

will be created, where the source for each aggregation is

the MCMEntity object and the destination is the appro-

priate MCMMetaData object in the input parameter list).

Note that this operation first deletes any existing attached

MCMMetaData objects (and their aggregations and asso-

ciation classes), and then instantiates a new set of

MCMMetaData objects; in doing so, each

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 27

MCMMetaData object is attached to this particular

MCMEntity object by first, creating an instance of the

MCMEntityHasMCMMetaData aggregation, and second,

realizing that aggregation instance as an association

class.

[D17] Each aggregation created by the setMCMMetaD-

ataList operation SHOULD have an association

class (i.e., an instance of the

MCMEnttyHasMCM-MetaDataDetail class).

setMCMMetaDataPartialList(

in attachedPartialMetaDataL-

ist : MCMMetaData[1..*])

This operation defines a set of one or more

MCMMetaData objects that will be attached to this par-

ticular MCMEntity object WITHOUT affecting any

other existing contained MCMMetaData objects or the

objects that are contained in them. This operation takes a

single input parameter, called attachedPartialMetaDataL-

ist, which is an array of one or more MCMMetaData ob-

jects. This operation creates a set of aggregations be-

tween this particular MCMEntity object and the set of

MCMMetaData objects identified in the input parameter.

[D18] Each aggregation created by the setMCMMetaD-

ataPartialList operation SHOULD have an asso-

ciation class (i.e., an instance of the MCMEnti-

tyHasMCMMetaDataDetail class).

delMCMMetaDataList()

This operation deletes ALL instances of attached

MCMMetaData for this particular MCMEntity. This op-

eration first removes the association class, and second,

removes the aggregation, between this MCMEntity ob-

ject and each MCMMetaData object that is attached to

this MCMEntity object. This operation has no input pa-

rameters.

delMCMMetaDataPartialList(

in attachedPartialMetaDataL-

ist :

MCMMetaData[1..*])

This operation deletes a set of MCMMetaData objects

from this particular MCMEntity. This operation takes a

single input parameter, called attachedPartialMetaDataL-

ist, which is an array of one or more MCMMetaData ob-

jects. This operation first, removes the association class

and second, removes the aggregation, between each

MCMMetaData object specified in the input parameter

and this MCMEntity. Note that all other aggregations be-

tween this MCMEntity and other MCMMetaData objects

that are not specified in the input parameter are NOT af-

fected.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 28

getMCMInfoResourceList() :

MCMInformationRe-

source[1..*]

This operation returns the set of MCMInformationRe-

source objects that are currently attached to this particu-

lar MCMEntity object. The return value is an array of

one or more objects, of type MCMInformationResource.

This operation follows all instances of the MCMEnti-

tyHasMCMInfoResource aggregation from this

MCMEntity object to each MCMInformationResource

object attached to it, and returns the associated MCMIn-

formationResource objects as an array.

[D19] If this object does not have any attached MCMIn-

formationResource objects, then a NULL

MCMInformationResource object SHOULD be

returned by the getMCMInfoResourceList opera-

tion.

setMCMInfoResourceList(

in attachedInfoResourceList :

MCMInfoResource[1..*])

This operation defines the complete set of MCMInfor-

mationResource objects that will be attached to this par-

ticular MCMEntity object. This operation takes a single

input parameter, called attachedInfoResourceList, which

is an array of one or more MCMInformationResource

objects. This operation creates a set of aggregations be-

tween this particular MCMEntity object and the set of

MCMInformationResource objects identified in the input

parameter. Note that this operation first deletes any exist-

ing attached MCMInformationResource objects (and

their aggregations and association classes), and then in-

stantiates a new set of MCMInformationResource ob-

jects; in doing so, each MCMInformationResource object

is attached to this particular MCMEntity object by first,

creating an instance of the MCMEntityHasMCMInfoRe-

source aggregation, and second, realizing that aggrega-

tion instance as an association class.

[D20] Each aggregation created by the setMCMInfoRe-

sourceList operation SHOULD have an associa-

tion class (i.e., an instance of the MCMEnti-

tyHasMCMInfoResourceDetail class).

setMCMInfoResourcePartial-

List(in attachedInfoRe-

sourcePartialList : MCMInfo-

Resource[1..*])

This operation defines a set of one or more MCMInfor-

mationResource objects that will be attached to this par-

ticular MCMEntity object WITHOUT affecting any

other existing contained MCMInformationResource ob-

jects or the objects that are contained in them. This oper-

ation takes a single input parameter, called attachedPar-

tialInfoResourceList, which is an array of one or more

MCMInformationResource objects. This operation cre-

ates a set of aggregations between this particular

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 29

MCMEntity object and the set of MCMInformationRe-

source objects identified in the input parameter.

[D21] Each created created by the setMCMInfoRe-

sourcePartialList aggregation SHOULD have an

association class (i.e., an instance of the

MCMEntityHasMCMInfoResourceDetail class).

delMCMInfoResourceList()

This operation deletes ALL instances of attached

MCMInformationResource objects for this particular

MCMEntity. This operation first, removes the associa-

tion class, and second, removes the aggregation, between

this MCMEntity object and each MCMInformationRe-

source object that is attached to this MCMEntity object.

This operation has no input parameters.

delMCMInfoResourcePartial-

List(

in attachedPartialMetaData :

MCMMetaData[1..*])

This operation deletes a set of MCMInformationRe-

source objects from this particular MCMEntity. This op-

eration takes a single input parameter, called attachedpar-

tialInfoResourceList, which is an array of one or more

MCMInformationResource objects. This operation first,

removes the association class and second, removes the

aggregation, between each MCMInformationResource

object specified in the input parameter and this

MCMEntity. Note that all other aggregations between

this MCMEntity and other MCMInformationResource

objects that are not identified in the input parameter are

NOT affected.

Table 6. Operations of the MCMEntity Class

MCMEntity defines two relationships, called MCMEntityHasMCMInfoResource and MCMEnti-

tyHasMCMMetaData, as shown in Figure 6.

MCMEntityHasMCMInfoResource is an aggregation, and defines the set of MCMInformationRe-

source objects that are associated with this particular set of MCMEntity objects. Its multiplicity is

defined to be 0..1 – 0..*. This means that this aggregation is optional (i.e., the “0” part of the 0..1

cardinality). If this aggregation is instantiated (e.g., the “1” part of the 0..1 cardinality), then zero

or more MCMInformationResource objects can be aggregated by this particular MCMEntity ob-

ject. Note that the cardinality on the part side (MCMInformationResource) is 0..*; this enables an

MCMEntity object to be defined without having to define an association MCMInformationRe-

source object. The semantics of this aggregation are defined by the MCMEntityHasMCMInfoRe-

sourceDetail association class. This enables the semantics of the aggregation to be defined using

the attributes and behavior of this association class. For example, it can be used to define which

MCMInformationResource objects are allowed to be associated with which MCMEntity objects.

MCMEntityHasMCMMetaData is an aggregation, and defines the set of MCMMetaData objects

that are associated with this particular set of MCMEntity objects. Its multiplicity is defined to be

0..1 – 0..*. This means that this aggregation is optional (i.e., the “0” part of the 0..1 cardinality). If

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 30

this aggregation is instantiated (e.g., the “1” part of the 0..1 cardinality), then zero or more

MCMMetaData objects can be aggregated by this particular MCMEntity object. Note that the car-

dinality on the part side (MCMMetaData) is 0..*; this enables an MCMEntity object to be defined

without having to define an MCMMetaData object for it to aggregate. The semantics of this ag-

gregation are defined by the MCMEntityHasMCMMetaDataDetail association class. This enables

the semantics of the aggregation to be defined using the attributes and behavior of this association

class. For example, it can be used to define which MCMMetaData objects are allowed to be asso-

ciated with which MCMEntity objects.

Both of the above association classes can be further enhanced by using the Policy Pattern (see

Figure 3) to define policy rules that constrain which part objects (i.e., MCMMetaData) are attached

to which object. Note that MCMPolicyStructure is an abstract class that is the superclass of im-

perative, declarative, and intent policy rules.

7.4.1 MCMEntityHasMCMMetaDataDetail Class Definition

This is an association class. Its purpose is to define descriptive and/or prescriptive characteristics

and behavior of the MCMEntity object that this MCMMetaData object is aggregated by. Table 7

defines the attributes for this class.

Attribute Name Manda-

tory?

Description

mcmEntityEnableStatus :

MCMEntityEnable[0..1]

NO This enumeration defines whether the MCMEntity
object that this MCMMetaData object refers to is
enabled for normal operation or not. The values are
defined in the MCMEntityEnable enumeration, and
include:
 ERROR
 INIT
 ENABLED_FOR_ALL
 ENABLED_FOR_TEST_ONLY
 DISABLED
 UNKNOWN

[D22] The default value for the mcmEntityEna-

bleStatus attribute SHOULD be 1.

mcmEntityValidEndTime:

TimeAndDate[0..1]

NO This is a TimeAndDate attribute; it contains a dates-
tamp and a timestamp. It defines the date and time
that the MCMEntity to which this MCMMetaData is
attached is no longer valid and available to be used.

[D23] This attribute SHOULD have a complete and

valid time and/or date.

[O3] The implementation MAY ensure that the

fields in this data type are set to an appropriate

default value.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 31

mcmEntityValidStartTime:

TimeAndDate[0..1]

NO This is a TimeAndDate attribute; it contains a date-
stamp and a timestamp. It defines the date and
time that the MCMEntity to which this
MCMMetaData is attached is valid and available to
be used.

[D24] This attribute SHOULD have a complete and

valid time and/or date.

[O4] The implementation MAY ensure that the

fields in this data type are set to an appropriate

default value.

Table 7. Attributes of the MCMEntityHasMCMMetaDataDetail Association Class

Operation Name Description

getMCMEntityEnableStatus :

MCMEntityEnable[1..1]

This operation returns the mcmEntityEnableStatus of
this set of MCMEntity and MCMMetaData objects. The
return value is one of the literals defined by the
MCMEntityEnable enumeration, and signifies whether
the MCMMetaData applied to this MCMEntity enables
it to be used or not.

setMCMEntityEnableStatus(

in inputStatus : MCMEntityEna-

ble [1..1])

This operation sets the current value of the mcmEnti-
tyEnableStatus of this set of MCMEntity and
MCMMetaData objects. It takes a single input parame-
ter, of type MCMEntityEnable, which is an enumera-
tion that defines whether the MCMMetaData applied
to this MCMEntity enables it to be used or not.

getMCMEntityValidEndTime :

TimeAndDate[1..1]

This operation returns the date and time at which this
Entity is no longer valid and hence, not able to be
used. It returns a datatype of type TimeAndDate.

[D25] This attribute SHOULD have a complete and

valid time and/or date.

[O5] The implementation MAY ensure that the fields

in this data type are set to an appropriate default

value.

setMCMEntityValidEndTime(

in endTime : TimeAndDate[1..1])

This operation sets the current value of the date and
time at which this Entity is no longer valid and able to
be used. It takes a single input parameter, which is of
type TimeAndDate; this is used to set the mcmEnti-
tyValidityEndTime to a new value.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 32

getMCMEntityValidStartTime :

TimeAndDate[1..1]

This operation sets the current value of the date and
time at which this Entity is valid and able to be used. It
takes a single input parameter, which is of type Time-
AndDate; this is used to set the mcmEntityValid-
ityStartTime to a new value.

[D26] This attribute SHOULD have a complete and

valid time and/or date.

[O6] The implementation MAY ensure that the fields

in this data type are set to an appropriate default

value.

setMCMEntityValidStartTime(

in startTime : Time-

AndDate[1..1])

This operation sets the current value of the date and
time at which this Entity is first valid and able to be
used. It takes a single input parameter, which is of
type TimeAndDate; this is used to set the mcmEnti-
tyValidityEndTime to a new value.

Table 8. Operations of the MCMEntityHasMCMMetaDataDetail Association Class

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 33

7.5 MCMUnManagedEntity Class Hierarchy

The MCMUnManagedEntity class has two subclasses, as shown in Figure 7

Figure 7. MCMUnManagedEntity Subclasses

The purpose of the MCMUnManagedEntity hierarchy is to model the major different types of

MCMEntities that cannot be intrinsically managed, yet are of interest to the managed environment.

Note: in the MCM, any purely physical object is defined as unmanageable. Examples include ge-

ographic areas, building, Racks, Chassis, and other purely physical Entities. Management capabil-

ities are provided by the logical objects that are attached to a physical object. MCMUn-

MangedEntity objects are important to the managed environment because they provide context

(e.g., where a customer premise equipment is located) and a point of reference (e.g., ensure that

cell coverage covers this geographic area).

Table 9 defines the purpose of this hierarchy, and aligns them to MEF 55 [1].

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 34

Name of Class Function Relation to MEF 55

MCMUnMan-

agedEntity

Represents Entities that are im-

portant to the managed environ-

ment that have no inherent ability

to digitally communicate and be

managed.

Not mentioned, but clearly

needed for Inventory, Order,

and other functions

MCMLocation

Represents points or areas that

contain physical objects that are

important to the managed environ-

ment.

Some types of locations (e.g.,

Sites) are mentioned, but

needs a more general model.

MCMLocationAtomic
A subclass of MCMLocation that

represents stand-alone Locations.

Not mentioned, but clearly

needed. Examples include a

stand-alone structure or area.

MCMLocationCompo-

site

A subclass of MCMLocation that

represents a set of Locations that

form a tree-like hierarchy.

Not mentioned, but clearly

needed. Examples include

nested Locations (e.g., a rack

within a wiring closet within

a floor within a building…).

MCMPhysicalEntity

Represents physical Entities,that

are important to the managed en-

vironment that cannot be managed

electronically.

Examples include Rack,

Chassis, Slot, Port, Card, Ca-

ble Duct, Shelf.

Table 9. Functions of the MCMUnManagedEntity Class and its Subclasses

7.5.1 MCMUnManagedEntity Class Definition

This is an abstract class, and specializes MCMEntity. It represents MCMEntities that are important

to the managed environment, but which have no inherent ability to digitally communicate with

other MCMEntities. Hence, they cannot be managed by digital mechanisms.

The current version of this CfCB defines two main subclasses of MCMUnManagedEntity, called

MCMLocation and MCMPhysicalEntity. They are described further in sections 7.5.2 and 7.5.6

below.

This class defines a single attribute, which is defined in Table 10.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 35

Attribute

Name

Manda-

tory?
Description

mcmIsTopo-

nym[0..1]
NO

This is a Boolean attribute. If the value of this attribute is
TRUE, then this MCMUnManagedEntity is a toponym (i.e., a
name of a place). Examples include “CustomerSiteLocation”
and “ArchivalFacility”. The value of the toponym MAY be
contained in the mcmCommonName attribute, or in a cus-
tom attribute added to this class.

Table 10. Attributes of the MCMUnManagedEntity Class

Table 11 defines the operations for the MCMUnManagedEntity Class.

Operation Name Description

getMCMIsToponym : Boolean[1..1]

This operation returns the value of the mcmIsToponym
attribute. If the value of this attribute is TRUE, then this
MCMUnManagedEntity is a toponym (i.e., a name of a
place). Examples include “CustomerSiteLocation” and
“ArchivalFacility”.

setMCMIsToponym(
in isAToponym : Boolean[1..1])

This operation sets the current value of the mcmIsTopo-
nym attribute. It contains a single input parameter, of
type Boolean. If the value of this attribute is TRUE, then
this MCMUnManagedEntity is a toponym (i.e., a name of
a place). Examples include “CustomerSiteLocation” and
“ArchivalFacility”.

Table 11. Operations of the MCMUnManagedEntity Class

At this time, no relationships are defined for the MCMUnManagedEntity class. It does participate

in one relationship, called MCMMgdEntityRefersToMCMUnManagedEntity; see section 7.8.1.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 36

7.5.2 MCMLocation Class Design

This section provides background information that describes the design of the MCMLocation class

hierarchy. Location design can be very complex, as multiple different factors (e.g., local conven-

tions describing geographic areas, the coordinate system used, and internationalization factors)

must be considered. The current MCM design provides a simplified approach that can include

these and other factors later.

7.5.2.1 Requirements

The design of the MCMLocation class hierarchy meets the following requirements:

[O7] Any physical entity MAY have an associated physical location; this is met by

defining an aggregation, called MCMPhyEntityHasMCMLocation, which is

shown in Figure 7.

[O8] Any managed entity MAY have an associated physical location; this is met by

defining an association, called MCMMgdEntityRefersToMCMUnManaged-En-

tity, which is shown Figure 7.

[O9] Any managed entity MAY have an associated physical location; this is met by

defining an association, called MCMMgdEntityRefersToMCMUnManaged-En-

tity, which is shown in Figure 7.

[O10] Locations MAY be defined as stand-alone or hierarchical structures (e.g., a sin-

gle location, such as a postal address, or the location of a room on a floor in a

building at a site); this is met by using the composite pattern to define atomic

and composite locations (i.e., MCMLocationAtomic and MCMLocationCompo-

site – see sections 7.5.4 and 7.5.5, respectively).

[R17] Location data MUST be specified as either a geocode or a set of points that

bound an area (e.g., a polygon).

[D27] Geocode data SHOULD be provided in text, and SHOULD be defined as either

relative or absolute.

[R18] Relative geocodes are textual descriptions of a location that, by itself, cannot

provide an exact location. A relative geocode MUST be specified using one or

more absolute geocodes as a reference. For example, “The nearest building

northwest of building A3” is a relative geocode that uses the location of build-

ing A3 as its reference. In contrast, absolute geocodes are textual descriptions

of a location that, by itself, can provide an exact location. For example, a USPS

ZIP code (or even a USPS ZIP+4 code) is considered an absolute geocode.

However, it is thought of as a polygon. Different geocoding systems use differ-

ent computation mechanisms (e.g., a centroid) to define the “center” of such an

area.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 37

[O11] Note: there is a surprising amount of variability in expressing an address. The

geocoding process MAY use additional mechanisms, such as address normali-

zation, to reduce this variability. Some geocoders also provide a degree of pre-

cision or confidence in their result.

7.5.2.2 Design

One approach to enabling a location to reference another location is to define an attribute for ref-

erencing the name of the class that it refers to. This is a poor choice for at least two reasons. First,

a location is a Class, and hence, using an attribute to refer to the name of a Class is better accom-

plished by using an association. Second, what if there are multiple references (e.g., a street address

might not correspond to a known street address in the geocoding database, so it is common practice

to use two addresses and interpolate).

Given that we need an association, the next decision is, between which objects? This depends on

how location is represented. For geocodes, the typical practice is to provide a set of input data, and

use a geocode service to turn those data into a geocode. This is complicated by the fact that the

actual location (e.g., a postal address, or even a land parcel) is owned by a different administrative

authority (e.g., the government). Hence, in this version of the MCM, a geocode is modeled as a

subclass of InformationResource (see section 7.10). Since an aggregation already exists between

MCMEntity and MCMInformationResource (see section 7.10.1), all that is needed is to define a

new subclass of MCMInformationResource, called MCMGeocode; this is shown in Figure 8.

Figure 8. Representing Geocodes in MCM

Note that any subclass of MCMUnManagedEntity may have any of the three subclasses of

MCMInformationResource; the particular set of MCMInformationResources are restricted by the

ue of the MCMEntityHasMCMInfoResourceDetail association class.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 38

Figure 9 shows both the MCMLocation and MCMPhysicalEntity class hierarchies and their rele-

vant relationships from the previous discussions.

Figure 9. MCMLocation and MCMPhysicalEntity Hierarchies

7.5.3 MCMLocation Class Definition

This is an abstract class, and specializes MCMUnManagedEntity. It represents a point or area that

an Entity may occupy. An MCMLocation can be one of two things: (1) a unique estimated or

actual geolocation, or (2) the coordinates of an enclosing container (e.g., a polyhedron) that defines

the perimeter of the location. In either case, MCMGeospatialMetaData can be used to provide

additional descriptive and/or prescriptive data as required (e.g., building colors and entrance in-

structions for different times, respectively). It has two subclasses, MCMLocationAtomic and

MCMLocationComposite, which are described in Sections 7.5.4 and 7.5.5, respectively.

Metadata information is a key part of any geolocation. Several standards exist on defining geospa-

tial metadata information. Hence, the MCM provides a subclass of MCMMetaData, called

MCMGeoSpatialMetaData, to represent such information. Note that an explicit relationship be-

tween MCMLocation and MCMMetaData is not required, since MCMLocation is a subclass of

MCMEntity, and MCMEntityHasMCMMetaData already exists to aggregate MCMMetaData to

MCMEntities.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 39

Another example of metadata is to provide generic information, such as information that catego-

rizes the business role that a particular MCMLocation plays (e.g., “Customer Premise”, “UNI

Site”, or “Billing Address”). This is implemented using the MCMEntityHasMCMMetaData ag-

gregation (note that this aggregation is inherited from MCMEntity). Another use of this approach

is to define information describing or prescribing characteristics and behavior of the location. For

example, metadata could be used to provide off-hour entry instructions to a building.

Note that [15] defines four different types of address formatting options (i.e., fielded address, for-

matted address, address reference, and geographic point). Since each of these options are really

complex data structures, this is implemented in the MCM using metadata to represent each of these

addresses. Once again, the MCMEntityHasMCMMetaData is used to attach the appropriate sub-

classes of MCMMetaData to the appropriate subclasses of MCMLocation. Table 12 defines the

attributes of the MCMLocation class.

Attribute Name
Manda-

tory?
Description

mcmIsAbso-

luteData : Bool-

ean[1..1]

YES

This is a Boolean attribute. If the value of this attribute is
TRUE, then the mcmLocationData class attribute contains
absolute input data. Otherwise, the mcmLocationData
class attribute contains relative data. Note that relative in-
put defines a relative geocode, which is dependent on (and
geographically relative to) other geocode locations.

mcmIsEstimated-

Location : Bool-

ean[0..1]

NO
This is a Boolean attribute. If the value of this attribute is
TRUE, then this location is an estimated value. Otherwise,
this location is a precise value.

mcmIs-

FixedBoundary :

Boolean[0..1]

NO

This is a Boolean attribute. If the value of this attribute is
TRUE, then this MCMlLocation has well-defined bounda-
ries. Otherwise, one or more boundaries of this MCMLoca-
tion are ambiguous and/or can change.

mcmIsGeocodeLo-

cation : Bool-

ean[1..1]

YES

This is a Boolean attribute. If the value of this attribute is
TRUE, then this location is an actual or estimated geocode.
Otherwise, this location is described by an enclosing con-
tainer (e.g., a polyhedron). In both cases, the location (i.e.,
the geocode or the points defining the polyhedron) are de-
fined by the mcmLocationDataList class attribute.

mcmLocationDa-

taList : String[1..*]
YES

This is an array of string attributes. Each string in this at-
tribute contains input data to determine the location. If
the mcmIsGeocodeLocation class attribute is TRUE, then
the data contained in this attribute is the input to a ge-
ocoding process. This may consist of one or more attrib-
utes. Otherwise, the data contained in this attribute con-
tain the coordinates of an enclosing container of this

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 40

MCMLocation; this is typically defined as one attribute per
coordinate.

[D28] If the value of the mcmLocationDataList attribute is

not known, then an empty string SHOULD be re-

turned.

Table 12. Attributes of the MCMLocation Class

Table 13 defines the operations for the MCMLocation Class.

Operation Name Description

getMCMIsAbsoluteData() :
Boolean[1..1]

This operation returns the value of the mcmIsAbsoluteData at-
tribute. If the value of this attribute is TRUE, then this MCMLo-
cation represents absolute location data. Otherwise, this
MCMLocation object represents relative location data (i.e., the
location is relative to another location).

setMCMIsAbsoluteData(
isAbsData : Boolean[1..1])

This operation sets the current value of the mcmIsAbsoluteData
attribute. This operation takes a single input parameter, of type
Boolean, which is used to change the value of the mcmIsAbso-
luteData class attribute. A value of TRUE means that this
MCMLocation object is defined using absolute data; otherwise,
this MCMLocation object is defined relative to another MCMLo-
cation object.

getMCMIsEstimatedLocation()
: Boolean[1..1]

This operation returns the value of the mcmIsEstimatedLocation
attribute. If the value of this attribute is TRUE, then this MCMLo-
cation represents an estimated location. Otherwise, this
MCMLocation object represents a precise location.

setMCMIsEstimatedLocation(
in isEstimate : Boolean[1..1])

This operation sets the current value of the mcmIsEstimated-
Location attribute. This operation takes a single input parame-
ter, of type Boolean, which is used to change the value of the
mcmIsEstimatedLocation class attribute. A value of TRUE means
that it is an estimated location, while a value of FALSE means
that it is a precise location.

getMCMIsFixedBoundary() :
Boolean[1..1]

This operation returns the value of the mcmIsFixedBoundary at-
tribute. If the value of this attribute is TRUE, then this MCMLo-
cation has a fixed boundary. Otherwise, this MCMLocation ob-
ject has one or more boundaries that can change.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 41

setMCMIsFixedBoundary(
in isFixed : Boolean[1..1])

This operation sets the current value of the mcmIsFixedBound-
ary attribute. This operation takes a single input parameter, of
type Boolean, which is used to change the value of the
mcmIsFixedBoundary class attribute. If the input variable is
TRUE, then this MCMLocation has a fixed boundary; otherwise,
it contains one or more boundaries that can change.

getMCMIsGeocodeLocation() :
Boolean[1..1]

This operation returns the value of the mcmIsGeocodeLocation
attribute. If the value of this attribute is TRUE, then this MCMLo-
cation represents an actual or estimated geocode (which is de-
fined by the mcmLocationDataList class attribute). Otherwise,
this MCMLocation object represents a location that is described
by an enclosing contaiiner (e.g., a polyhedron).

setMCMIsGeocodeLocation(
in isGeocode : Boolean[1..1])

This operation sets the current value of the mcmIsGeocodeLoca-
tion attribute. This operation takes a single input parameter, of
type Boolean, which is used to change the value of the mcmIs-
GeocodeLocation class attribute. If the input variable is TRUE,
then this MCMLocation is defined by a geocode; otherwise, it is
defined by a polyhedron.

getMCMLocationDataList() :
String[1..*]

This operation returns the value of the mcmLocationDataList at-
tribute. The return value is an array of Strings that collectively
define either the geocode or each point in a surrounding
polyhedron that defines this MCMLocation.

[D29] If this object does not have a value for the mcmLo-

cationDataList attribute, then a NULL string

SHOULD be returned by the getMCMLocationDa-

taList operation.

setMCMLocationDataList(
in locationDataList :
String[1..*])

This operation sets the current value of the mcmLocationData-
List attribute. This operation takes a single input parameter, of
type String[1..*], which is used to change the value of the
mcmLocationDataList class attribute. The mcmLocationDataList
class attribute defines the data describing the boundary of the
MCMLocation either as a geocode or as a polyhedron.

getMCMLocationParent() :
MCMLocationComposite[1..1]

This operation returns the parent of this MCMLocation object.

[D30] If this MCMLocation object has no parent, then a

NULL MCMLocationObject SHOULD be re-

turned.

setMCMLocationParent(
in newParent :
MCMLocationComposite[1..1])

This operation defines the parent of this MCMLocation object.

[R19] If this MCMLocation object already has a parent,

then an exception MUST be raised.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 42

getMCMPhyEntityListAtLoca-
tion() : MCMPhysicalEn-
tity[1..*]

This operation returns the set of MCMPhysicalEntity objects
that are at this particular MCMLocation. This is done by follow-
ing each instance of the MCMPhyEntityHasMCMLocation associ-
ation, and taking into effect any semantics defined by the
MCMPhyEntityHasMCMLocationDetail association class. This
operation takes no input parameters.

[D31] If no MCMPhysicalEntity objects are associated

with this particular MCMLocation, then a NULL

MCMPhysicalEntity object SHOULD be returned.

setMCMPhyEntityListAtLoca-
tion (in phyEntityList :
MCMPhysicalEntity[1..*])

This operation defines a set of MCMPhysicalEntity objects that
are associated with this particular MCMLocation. This operation
takes a single input parameter, called phyEntityList, which is an
array of one or more MCMPhysicalEntity objects. This operation
creates a set of aggregations between this particular MCMLoca-
tion object and the set of MCMPhysicalEntity objects identified
in the input parameter This is done by instantiating an instance
of the MCMPhyEntityHasMCMLocation association for each
MCMPhysicalEntity in the input parameter, and then realizing
that association with an instance of the MCMPhyEntityHas-
MCMLocationDetail association class. Note that this operation
first deletes any existing associated MCMPhysicalEntity objects
(and their aggregations and association classes), and then in-
stantiates a new set of MCMPhysicalEntity objects; in doing so,
each MCMPhysicalEntity object is attached to this particular
MCMLocation object by first, creating an instance of the
MCMPhyEntityHasMCMLocation aggregation, and second, real-
izing that aggregation instance as an association class.

[D32] When the setMCMPhyEntityListAtLocation opera-

tion is executed, each created aggregation

SHOULD have an association class (i.e., an instance

of the MCMPhyEntityHasMCMLocationDetail

class).

setMCMPhyEntityPartialList-
AtLocation (in phyEntityPar-
tialList: MCMPhysicalEle-
ment[1..*])

This operation defines a set of one or more MCMPhysicalEntity
objects that should be associated with this particular MCMLoca-
tion object WITHOUT affecting any other existing contained
MCMLocation objects or the objects that are contained in them.
This operation takes a single input parameter, called phyEnti-
tyPartialList, which is an array of one or more MCMPhysicalEn-
tity objects. This operation creates a set of aggregations be-
tween this particular MCMLocation object and the set of
MCMPhysicalEntity objects identified in the input parameter.

[D33] When the setMCMPhyEntityPartialListAtLocation

operation is executed, each created aggregation

SHOULD have an association class (i.e., an instance

of the MCMPhyEntityHasMCMLocation-Detail

class).

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 43

delMCMPhyEntityAtLocation()

This operation deletes ALL instances of MCMPhysicalEntity ob-
jects that are related to this particular MCMLocation object. This
operation first removes the association class, and second, re-
moves the association, between this MCMLocation object and
each MCMPhysicalEntity object that is attached to this MCMLo-
cation object. This operation has no input parameters.

delMCMPhyEntityPartialList-
AtLocation(in phyEntityList :
MCMPhysicalEntity[1..*])

This operation deletes the set of instances of MCMPhysicalEn-
tity objects that are specified in the phyEntityList parameter that
are related to this particular MCMLocation object. This opera-
tion first removes the association class, and second, removes
the association, between this MCMLocation object and each
MCMPhysicalEntity object that is specified in the phyEntityList
(that is attached to this MCMLocation) parameter. All other as-
sociations between this particular MCMLocation object and
other MCMPhysicalEntity objects that are not specified in the
phyEntityList parameter are NOT affected.

Table 13. Operations of the MCMLocation Class

At this time, no relationships are defined for the MCMLocation class, although it participates in

two relationships, MCMHasLocation and MCMPhyEntityHasMCMLocation (see sections 7.5.5

and 7.5.6, respectively).

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 44

7.5.4 MCMLocationAtomic Class Definition

This is an abstract class, and specializes MCMLocation. This class represents stand-alone

MCMLocation objects. In addition, each MCMLocationAtomic has characteristics and behavior

that is externally visible. Examples include a single building that is not related to other buildings,

or the location of a cable duct (remember, an MCMLocation can be a polyhedron).

[R20] This class MUST NOT contain another MCMLocation object.

At this time, no attributes are defined for the MCMLocationAtomic class.

 At this time, no operations are defined for the MCMLocationAtomic class.

At this time, no relationships are defined for the MCMLocationAtomic class.

7.5.5 MCMLocationComposite Class Definition

This is an abstract class, and specializes MCMLocation. This class represents a set of related

MCMLocation objects that are organized into a tree structure. Its primary use is to collect other

types of MCMLocation objects.

[O12] Each MCMLocationComposite object MAY contain zero or more MCMLoca-

tionAtomic and/or zero or more MCMLocationComposite objects.

For example, a Building may contain floors, floors may contain rooms, rooms may contain wiring

closets, and wiring closets may contain other physical entities (e.g., racks and chassis) that in turn

contain equipment (e.g., Computers, Routers, and Switches) that are of interest to the managed

environment. In this example:

• A building is a type of MCMLocationComposite, since its purpose is to contain other

MCMEntities

• A floor is a type of MCMLocationComposite; while it does not “contain” anything, other

physical entities may be put “on” a floor (which yields the same result).

• A room is a type of MCMLocationComposite, since the purpose of the room is to contain

things.

• Similarly, a Wiring Closet is a type of Room that contains physical equipment and elec-

trical connections; hence, it is also an MCMLocationComposite.

• A Rack is a standardized enclosure for mounting multiple electronic equipment modules;

hence, a Rack is an MCMLocationComposite.

• A Chassis is a standardized enclosure that contains the components that make up a type

of equipment (e.g., a computer or router); hence, a Chassis is an MCMLocationCompo-

site.

• Equipment frames, such as a Computer or Router or Switch, are all examples of an

MCMLocationComposite, since they contain other physical components.

• Physical port is an example of an MCMLocationAtomic.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 45

[O13] Each of these physical entities MAY have an associated location, which is de-

fined using the MCMPhyEntityHasMCMLocation aggregation in and discussed

in section 7.5.6.

At this time, no attributes are defined for the MCMLocationComposite class. Most attributes will

likely be realized using relationships and/or operations. For example, a query to an instance of the

MCMLocationComposite class to provide its set of contained MCMLocations (e.g., the floor(s) of

a building in a site) will be done by using class operations; the MCMLocationComposite instance

will query each of its contained MCMLocations (which will in turn call their operations to acquire

their MCMLocations), aggregate and organize the information, and provide that information in its

operation response.

Table 14 defines the operations for the MCMLocationComposite class.

Operation Name Description

getMCMLocationChild-

List() : MCMLocation[1..*]

This operation returns the set of all MCMLocation objects
that are contained in this specific MCMLocationComposite
object. There are no input parameters to this operation.
This operation returns a list of one or more MCMLocation
objects (i.e., the list is made up of MCMLocationAtomic
and/or MCMLocationComposite objects).

[D34] If no MCMLocation objects are found, then this op-

eration SHOULD return a NULL MCMLocation ob-

ject).

setMCMLocationChildList(

childObjectList :

MCMLocation[1..*])

This operation defines a set of MCMLocation objects that
will be contained by this particular MCMLocationComposite
object. This operation takes a single input parameter, called
childObjectList, which is an array of one or more MCMLoca-
tion objects (i.e., one or more MCMLocationAtomic and/or
MCMLocationComposite objects). This has the effect of cre-
ating an instance of the MCMHasLocation aggregation be-
tween each MCMLocation object in the childObjectList and
this particular MCMLocationComposite object. Note that
this operation first deletes any existing contained MCMLo-
cation objects (and their aggregations and association clas-
ses), and then instantiates a new set of MCMLocation ob-
jects; in doing so, each MCMLocation object is contained
within this particular MCMLocationComposite object by
first, creating an instance of the MCMHasLocation aggrega-
tion, and second, realizing that aggregation instance as an
association class.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 46

[D35] When this operation is executed, each created aggre-

gation SHOULD have an association class (i.e., an

instance of the MCMHasMCMLocationDetail class).

setMCMLocationPartial-

ChildList(in childObject-

List : MCMLocation[1..*])

This operation defines a set of one or more MCMLocation
objects that should be contained within this particular
MCMLocationComposite object WITHOUT affecting any
other existing contained MCMLocation objects or the ob-
jects that are contained in them. This operation takes a sin-
gle input parameter, called childObjectList, which is an array
of one or more MCMLocation objects. This has the effect of
creating a set of aggregations between this particular
MCMLocationComposite object and each of the MCMLoca-
tion objects identified in the childObjectList.

[D36] When this operation is executed, each created aggre-

gation SHOULD have an association class (i.e., an

instance of the MCMHasMCMLocationDetail class).

delMCMLocationChild-

List()

This operation deletes ALL contained MCMLocation objects
of this particular MCMLocationComposite object. This has
the effect of first, removing the association class, and sec-
ond, removing the aggregation, between this MCMLoca-
tionComposite object and each MCMLocation object that is
contained in this MCMLocationComposite object. This oper-
ation has no input parameters.

delMCMLocationPartial-

ChildList (

in childObjectList :

MCMLocation[1..*])

This operation deletes a set of MCMLocation objects from
this particular MCMLocationComposite object WITHOUT af-
fecting any other existing contained MCMLocation objects
or the objects that are contained in them. This operation
takes a single input parameter, called childLocationList,
which is an array of one or more MCMLocation objects. This
has the effect of first, removing the association class and
second, removing the aggregation, between each MCMLo-
cation object specified in the input parameter and this
MCMLocationComposite object. Note that all other aggre-
gations between this MCMLocationComposite and other
MCMLocation objects that are not identified in the input pa-
rameter are NOT affected.

Table 14. Operations for the MCMLocationComposite Class

The MCMLocationComposite class defines a single aggregation, called MCMHasLocation. This

aggregation is used to define the set of MCMLocation objects that are contained within this par-

ticular MCMLocationComposite object. Its multiplicity is defined to be 0..1 – 0..*. This means

that this aggregation is optional (i.e., the “0” part of the 0..1 cardinality). If this aggregation is

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 47

instantiated (e.g., the “1” part of the 0..1 cardinality), then zero or more MCMLocation objects can

be associated with this particular MCMLocationComposite object. Note that the cardinality on the

part side (MCMLocation) is 0..*; this enables an MCMLocationComposite object to be defined

without having to define an MCMLocation object for it to aggregate.

The semantics of the MCMHasLocation aggregation is realized using an association class, called

MCMHasLocationDetail. This enables the semantics of the MCMHasLocation aggregation to be

realized using the attributes, operations, and relationships of the MCMHasLocationDetail associ-

ation class. The Policy Pattern may be used to control which specific MCMLocation objects are

contained within a given MCMLocationComposite object for a given context. See Figure 3 for an

exemplary illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract class

that is the superclass of imperative, declarative, and intent policy rules.

The MCMLocation class also participates in a second association, called MCMPhyEnti-

tyHasMCMLocation. Please see section 7.5.6.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 48

7.5.6 MCMPhysicalEntity Class Definition

This is an abstract class, and specializes MCMUnManagedEntity. It represents MCMEntities that

are important to the managed environment that have a physical form. They cannot be managed

electronically. Examples include Rack, Chassis, CableDuct, and Card. The composite pattern is

applied to MCMPhysicalEntity to enable stand-alone as well as hierarchies of MCMPhysicalEn-

tities to be represented. This is described in sections 7.5.7 and 7.5.8, respectively.

Note that some attributes, such as the revision number of a hardware component, are defined by

MCMMetada classes. This differs from other implementations, which typically define such attrib-

utes in the equivalent of this class (note that other implementations typically do not have a formal

metadata class hierarchy, and hence, have no alternative). This was done in the MCM in order to

accommodate more use cases and provide flexibility in defining MCMPhysicalEntities.

Table 15 defines the attributes of the MCMPhysicalEntity class.

Attribute Name Mandatory? Description

mcmAssetID :

String[0..1]
NO

This is a string attribute. It contains a user-assigned as-
set tracking identifier for the component.

[R21] The mcmAssetID attribute MUST NOT be used

as an objectID, since one is inherited from

MCMRootEntity.

[D37] If an mcmAssetID attribute is not assigned, then

the value of this attribute SHOULD be set to an

empty string.

mcmManufacture-

Date : Time-

AndDate[1..1]

YES

This is a TimeAndDate attribute, and contains the date
and time of the manufacturing of this object.

[D38] This attribute SHOULD have a complete and

valid time and/or date.

[O14] The implementation MAY ensure that the fields

in this data type are set to an appropriate default

value.

mcmManufacturer

: String[0..1]
NO

This is a string attribute. It contains the name of the
manufacturer of this object.

[D39] If the Manufacturer is not known, then the value

of the mcmManufacturer attribute SHOULD

be set to an empty string.

mcmSerialNumber

: String[1..1]
YES

This is a string attribute. It contains the serial number
of this object.

[D40] If an mcmSerialNumber attribute is not as-

signed, then the value of this attribute

SHOULD be set to an empty string.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 49

Table 15. Attributes of the MCMPhysicalEntity Class

Table 16 defines the following operations for the MCMPhysicalEntity class.

Operation Name Description

getMCMAssetID() :

String[1..1]

This operation returns the mcmAssetID attribute of this
MCMPhysicalEntity object. There are no input parameters to
this operation.

[D41] If an mcmAssetID attribute is not assigned, then the re-

turned value of the getMCMAssetID operation

SHOULD be set to an empty string.

setMCMAssetID(

in newAssetID :

String[1..1])

This operation defines a new mcmAssetID attribute for this
MCMPhysicalEntity object. A single input parameter, called
newAssetID (of type String), is defined.

[D42] If an mcmAssetID attribute is not known, then the value

of this attribute SHOULD be set to an empty string.

getMCMManufacture-

Date() : Time-

AndDate[1..1]

This operation returns the mcmManufactureDate attribute, in

the form of a TimeAndDate datatype, of this MCMPhysicalEn-

tity object. There are no input parameters to this operation.

[D43] This attribute SHOULD have a complete and valid time

and/or date.

[O15] The implementation MAY ensure that the fields in this

data type are set to an appropriate default value.

setMCMManufacture-

Date(

manufacturerDate :

TimeAndDate[1..1])

This operation defines a new mcmManufactureDate attribute,
in the form of a TimeAndDate datatype, for this MCMPhysi-
calEntity object. A single input parameter, called manufactur-
erDate (of type TimeAndDate) is defined for this operation.

getMCMManufacturer() :

String[1..1]

This operation returns the mcmManufacturer attribute of this
MCMPhysicalEntity object. There are no input parameters to
this operation.

[D44] If the mcmManufacturer is not known or does not exist,

then an empty string SHOULD be returned.

setMCMManufacturer(

manufacturerName :

String[1..1])

This operation defines a new mcmManufacturer attribute for
this MCMPhysicalEntity object. A single string attribute,
named manufacturerName, is defined.

[D45] If the mcmManufacturer is not known or does not exist,

then the value of this attribute SHOULD be set to an

empty string.

getMCMSerialNumber()

: String[1..1]

This operation returns the mcmSerialNumber attribute of this
MCMPhysicalEntity object. There are no input parameters to
this operation.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 50

[D46] If the serial number is not known or does not exist, then

an empty string SHOULD be returned.

setMCMSerialNumber(in

newSerialNumber :

String[1..1])

This operation defines a new mcmSerialNumber attribute for
this MCMPhysicalEntity object. A single string attribute,
named newSerialNumber (of type String), is defined.

[D47] If the serial number is not known, then the value of this

attribute SHOULD be set to an empty string.

getMCMPhysicalEnti-

tyParent() : MCMPhysi-

calEntityComposite[1..1]

This operation returns the parent of this MCMPhysicalEntity
object.

[D48] If this MCMPhysicalEntity object has no parent, then a

NULL MCMPhysicalEntityComposite SHOULD be

returned.

setMCMPhysicalEnti-

tyParent(in newParent :

MCMPhysicalEnti-

tyComposite[1..1])

This operation defines the parent of this MCMPhysicalEntity
object.

[D49] If this MCMPhysicalEntity object already has a parent,

then an exception SHOULD be raised.

getMCMLocation-

ListForPhyEntity() :

MCMLocation[1..*]

This operation returns the set of MCMLocation objects that
are associated with this particular MCMPhysicalEntity. This is
done by following each instance of the MCMPhyEnti-
tyHasMCMLocation association, and taking into effect any se-
mantics defined by the MCMPhyEntityHasMCMLocationDetail
association class. This operation takes no input parameters.

[D50] If no MCMLocation objects are associated with this par-

ticular MCMPhysicalEntity, then a NULL MCMLoca-

tion object SHOULD be returned.

setMCMLocation-

ListForPhyEntity(in loca-

tionList :

MCMLocation[1..*])

This operation defines a set of MCMLocation objects that are
associated with this particular MCMPhysicalEntity. This opera-
tion takes a single input parameter, called locationList, which
contains an array of one or more MCMLocation objects. This is
done by instantiating an instance of the MCMPhyEnti-
tyHasMCMLocation association for each MCMLocation object
in the input parameter, and then realizing that association
with an instance of the MCMPhyEntityHasMCMLocationDetail
association class. Note that this operation first deletes any ex-
isting associated MCMLocation objects (and their aggregations
and association classes), and then instantiates a new set of
MCMPhysicalEntity objects; in doing so, each MCMPhysicalEn-
tity object is attached to this particular MCMLocation object
by first, creating an instance of the MCMPhyEntityHasMCMLo-
cation aggregation, and second, realizing that aggregation in-
stance as an association class.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 51

[D51] Each created aggregation SHOULD have an association

class (i.e., an instance of the MCMPhyEnti-

tyHasMCMLocationDetail class).

setMCMLocationPartial-

ListForPhyEntity(in

locPartialList :

MCMLocation[1..*])

This operation defines a set of one or more MCMLocation ob-
jects that should be associated with this particular MCMPhysi-
calEntity object WITHOUT affecting any other existing con-
tained MCMLocation objects or the objects that are contained
in them. This operation takes a single input parameter, called
locPartialList, which is an array of one or more MCMLocation
objects. This operation creates a set of aggregations between
this particular MCMPhysicalEntity object and the set of
MCMLocation objects identified in the input parameter.

[D52] Each created aggregation SHOULD have an association

class (i.e., an instance of the MCMPhyEnti-

tyHasMCMLocationDetail class).

delMCMLocationForPhy-

Entity()

This operation deletes ALL instances of MCMLocation objects
that are related to this particular MCMPhysicalEntity object.
This operation first removes the association class, and second,
removes the association, between this MCMPhysicalEntity ob-
ject and each MCMLocation object that is attached to this
MCMLocation object. This operation has no input parameters.

delMCMLocationPartial-

ListForPhyEntity (in loca-

tionList : MCMLoca-

tion[1..*])

This operation deletes the set of instances of MCMLocation
objects that are specified in the locationList parameter that
are related to this particular MCMPhysicalEntity object. This
operation first removes the association class, and second, re-
moves the association, between this MCMPhysicalEntity ob-
ject and each MCMLocation object that is specified in the loca-
tionList parameter. All other associations between this particu-
lar MCMPhysicalEntity object and other MCMLocation objects
that are not specified in the locationList parameter are NOT af-
fected.

Table 16. Operations for the MCMPhysicalEntity Class

At this time, the MCMPhysicalEntity class defines a single association that defines zero or more

MCMLocations for a given MCMPhysicalEntity, called MCMPhyEntityHasMCMLocation. The

multiplicity of this association is defined as 0..1 – 0..*. This means that this association is optional

(i.e., the “0” part of the 0..1 cardinality). If this association is instantiated (e.g., the “1” part of the

0..1 cardinality), then zero or more MCMLocation objects can be associated with this particular

MCMPhysicalEntity object. Note that the cardinality on the part side (MCMLocation) is 0..*; this

enables an MCMPhysicalEntity object to be defined without having to define an associated

MCMLocation object . The semantics of the MCMPhyEntityHasMCMLocation association is re-

alized using an association class, called MCMPhyEntityHasMCMLocationDetail. This controls

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 52

the set of which MCMLocation objects can be associated with this particular MCMPhysicalEntity

object.

The Policy Pattern may be used to control which specific MCMLocation objects are associated

with a given MCMPhysicalEntity object for a given context. See Figure 3 for an exemplary illus-

tration of the Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the super-

class of imperative, declarative, and intent policy rules.

The MCMPhysicalEntity class also participates in a second aggregation, called MCMHasPhysi-

calEntity; see section 7.5.8.

7.5.7 MCMPhysicalEntityAtomic Class Definition

This is an abstract class, and specializes MCMPhysicalEntity. Each MCMPhysicalEntityAtomic

has characteristics and behavior that are externally visible. Examples include a single building that

is not related to other buildings, or a cable duct. It is abstract because it is intended to be subclassed.

[R22] This class represents stand-alone MCMPhysicalEntity objects (i.e., they

MUST NOT contain another MCMPhysicalEntity object).

At this time, no attributes are defined for the MCMPhysicalEntityAtomic class.

At this time, no relationships are defined for the MCMPhysicalEntityAtomic class.

7.5.8 MCMPhysicalEntityComposite Class Definition

This is a concrete class, and specializes MCMPhysicalEntity. This class represents a set of related

MCMPhysicalEntity objects that are organized into a tree structure. Its primary use is to collect

other types of MCMPhysicalEntity objects (e.g., MCMPhysicalEntityAtomic and MCMPhysi-

calEntityComposite).

[O16] Each MCMPhysicalEntityComposite object MAY contain zero or more

MCMPhysicalEntityAtomic and/or zero or more MCMPhysicalEntityAtomic

objects.

For example, a Building may contain floors, wiring closets, and other physical entities that are of

interest to the managed environment.

At this time, no attributes are defined for the MCMPhysicalEntityComposite class. Most attributes

will likely be realized using relationships and/or operations. For example, a query to an instance

of the MCMPhysicalEntityComposite class to provide its set of contained MCMPhysicalEntity

objects (e.g., physical ports in one or more cards in one or more slots of a chassis) will be done by

using class operations; the MCMPhysicalEntityComposite instance will query each of its con-

tained MCMPhysicalEntity objects (which will in turn call their operations to acquire their

MCMPhysicalEntity details), aggregate and organize the information, and provide that infor-

mation in its operation response.

Table 17 defines the following operations for the MCMPhysicalEntityComposite class.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 53

Operation Name Description

getMCMPhysicalEnti-

tyChildList() : MCMPhysi-

calEntity[1..*]

This operation returns the set of all MCMPhysicalEntity ob-
jects that are contained in this specific MCMPhysicalEnti-
tyComposite object. There are no input parameters to this
operation. This operation returns a list of zero or more
MCMPhysicalEntity objects (i.e., the list is made up of
MCMPhysicalEntityAtomic and/or
MCMPhysicalEntityComposite objects).

[D53] If this MCMPhysicalEntityComposite object has no

children, then it SHOULD return a NULL

MCMPhysicalEntity object.

setMCMPhysicalEnti-

tyChildList(childObjectList

: MCMPhysicalEntity[1..*])

This operation defines a set of MCMPhysicalEntity objects
that will be contained by this particular MCMPhysicalEnti-
tyComposite object. This operation takes a single input pa-
rameter, called childObjectList, which is an array of one or
more MCMPhysicalEntity objects (i.e., one or more
MCMPhysicalEntityAtomic and/or
MCMPhysicalEntityComposite objects). This operation first
creates an instance of the MCMHasPhysicalEntity aggrega-
tion between each MCMPhysicalEntity object in the child-
ObjectList and this particular MCMPhysicalEntityComposite
object. Note that this operation first deletes any existing
contained MCMPhysicalEntity objects (and their aggrega-
tions and association classes), and then instantiates a new
set of MCMPhysicalEntity objects; in doing so, each
MCMPhysicalEntity object is contained within this particular
MCMPhysicalEntityComposite object by first, creating an in-
stance of the MCMHasPhysicalEntity aggregation, and sec-
ond, realizing that aggregation instance as an association
class.

[D54] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMHasPhysi-

calEntityDetail association class).

setMCMPhysicalEntityPar-

tialChildList(

childObjectList :

MCMPhysicalEntity[1..*])

This operation defines a set of one or more MCMPhysicalEn-
tity objects that should be contained within this particular
MCMPhysicalEntityComposite object WITHOUT affecting
any other existing contained MCMPhysicalEntity objects or
the objects that are contained in them. This operation takes
a single input parameter, called childObjectList, which is an
array of one or more MCMPhysicalEntity objects. This oper-
ation creates a set of aggregations between this particular

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 54

MCMPhysicalEntityComposite object and each of the
MCMPhysicalEntity objects identified in the childObjectList.

[D55] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMHasPhysi-

calEntityDetail class).

delMCMPhysicalEnti-

tyChildList()

This operation deletes ALL contained MCMPhysicalEntity
objects of this particular MCMPhysicalEntityComposite ob-
ject. This has the effect of first, removing the association
class, and second, removing the aggregation, between this
MCMPhysicalEntityComposite object and each MCMPhysi-
calEntity object that is contained in this MCMPhysicalEnti-
tyComposite object. This operation has no input parame-
ters.

delMCMPhysicalEntityPar-

tialChildList (

in childObjectList :

MCMPhysicalEntity[1..*])

This operation deletes a set of MCMPhysicalEntity objects
from this particular MCMPhysicalEntityComposite object.
This operation takes a single input parameter, called child-
ObjectList, which is an array of one or more MCMPhysi-
calEntity objects. This has the effect of first, removing the
association class and second, removing the aggregation, be-
tween each MCMPhysicalEntity object specified in the input
parameter and this MCMPhysicalEntityComposite object.
Note that all other aggregations between this MCMPhysi-
calEntityComposite and other MCMPhysicalEntity objects
that are not identified in the input parameter are NOT af-
fected.

Table 17. Operations of the MCMPhysicalEntityComposite Class

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 55

The MCMPhysicalEntityComposite class defines a single aggregation, called MCMHasPhysi-

calEntity. This aggregation is used to define the set of MCMPhysicalEntity objects that are con-

tained within this particular MCMPhysicalEntityComposite object. Its multiplicity is defined to be

0..1 – 0..*. This means that this aggregation is optional (i.e., the “0” part of the 0..1 cardinality). If

this aggregation is instantiated (e.g., the “1” part of the 0..1 cardinality), then zero or more

MCMPhysicalEntity objects can be aggregated by this particular MCMPhysicalEntityComposite

object. Note that the cardinality on the part side (MCMPhysicalEntity) is 0..*; this enables an

MCMPhysicalEntityComposite object to be defined without having to define an MCMPhysicalEn-

tity object for it to aggregate.

The semantics of the MCMHasPhysicalEntity aggregation is realized using an association class,

called MCMHasPhysicalEntityDetail. This enables the semantics of the MCMHasPhysicalEntity

aggregation to be realized using the attributes, operations, and relationships of the MCMHasPhys-

icalEntityDetail association class. The Policy Pattern may be used to control which specific

MCMPhysicalEntity objects are contained within a given MCMPhysicalEntityComposite object

for a given context. See Figure 3 for an exemplary illustration of the Policy Pattern. Note that

MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and in-

tent policy rules.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 56

7.6 MCMDomain Class Hierarchy

The MCMDomain class has a single subclass, as shown in Figure 10.

Figure 10. MCMDomain Subclasses

Table 18 defines the purpose of this hierarchy, and aligns them to MEF 55 [1]. The purpose of the

MCMDomain hierarchy is to model the major different types of Entities that are inherently man-

ageable using digital means, and which also are of interest to the managed environment. Examples

include interfaces of a network device, protocols, policy rules, and behavior of an object.

Name of Class Function Relation to MEF 55

MCMDomain

Defines a collection of MCMEntities that

share a common purpose. In addition, each

constituent MCMEntity in an MCMDomain

is both uniquely addressable and uniquely

identifiable within that MCMDomain

Models the generic

concept of an admin-

istrative domain.

MCMManagement-

Domain

An MCMManagementDomain is used to

contain MCMManagedEntities. It refines

the notion of an MCMDomain by adding

three important behavioral features: 1) it de-

fines a set of administrators that govern the

MCMManagedEntities that it contains; 2) it

defines a set of applications that are respon-

sible for different governance operations,

such as monitoring, configuration, and so

forth; 3) it defines a common set of manage-

ment mechanisms, such as policy rules, that

This links the Policy

Driven Orchestration

work to MEF55.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 57

are used to govern the behavior of

MCMManagedEntities contained in the

MCMManagementDomain.

MCMMgmtDomain

Atomic

Represents MCMManagementDomains that

are modeled as a single, stand-alone, man-

ageable object.

The most common

type of MCMMan-

agementDomain.

MCMMgmt

DomainComposite

Represents MCMManagementDomains that

are modeled as a hierarchy of manageable

objects. This produces three objects: the

Composite MCMManagementDomains, the

set of constituent component MCMManage-

mentDomains, and the combination of

these.

Accommodates

nested Orders and Or-

ders that form a tree-

like hierarchy.

Table 18. Functions of the MCMDomain Class and its Subclasses

7.6.1 MCMDomain Class Definitiion

This is an abstract class, and specializes MCMEntity. An MCMDomain is a collection of MCMEn-

tities that share a common purpose. In addition, each constituent MCMEntity in an MCMDomain

is both uniquely addressable and uniquely identifiable within that MCMDomain.

At this time, no attributes are defined for the MCMDomain class.

At this time, no operations are defined for the MCMDomain class.

At this time, no relationships are defined for the MCMDomain class.

7.6.2 MCMManagementDomain Class Definition

This is a concrete class, and specializes MCMDomain. Unlike an MCMDomain, an MCMMan-

agementDomain is used to contain MCMManagedEntities. Hence, it refines the notion of a Do-

main by adding several important behavioral features, as specified in the following requirements:

[R23] First, each MCMManagedEntity that is contained in an MCMManagement-

Domain MUST be uniquely identifiable for management purposes.

[D56] Second, an MCMManagementDomain SHOULD define a set of administrators

that govern the ManagedEntities that it contains

[O17] Third, an administrator MAY be restricted to execute a subset of operations for

a given MCMManagementDomain.

[D57] Fourth, an MCMManagementDomain SHOULD define a set of applications

that are responsible for different governance operations, such as monitoring and

configuration.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 58

[O18] Fifth, different applications MAY be responsible for different governance oper-

ations (e.g., monitoring and configuration may be done by the same or different

applications).

[D58] Sixth, an MCMManagementDomain SHOULD define a common set of man-

agement mechanisms, such as policy rules, that are used to govern the behavior

of ManagedEntities contained in the ManagementDomain.

This set of features combine to enable an MCMManagementDomain to be administered as a single

unit.

The above concepts are represented as follows:

o Unique identifiability is satisfied by the use of objectIDs (defined in

MCMRootEntity, see section 7.2)

o Administrators are defined as a type of MCMPartyRole (see section 7.11.2.2); since

an MCMPartyRole is a type of MetaData, it can be associated with an MCMManage-

mentDomain through the use of the MCMEntityHasMCMMetaData aggregation (see

section 7.4)

o Governance operations are a specific type of MCMInternalService (see section

7.8.5.6)

o Policies are defined in the MEF Policy Driven Orchestration project.

The constraint for having an MCMDomain contain MCMManagedEntities, and not simply

MCMEntities, is realized using the MCMMgmtDomainHasMCMManagedEntity aggregation.

This aggregation is realized using an association class (called MCMMgmtDomainHasMCMMan-

agedEntityDetail), whose attributes are controlled by a set of policies.

[O19] This association MAY also be further refined using OCL.

Currently, no attributes are defined for this class.

Table 19 defines the operations for the MCMManagementDomain class.

Operation Name Description

getMCMMgmtDomainParent() :

MCMMgmtDomainCompo-

site[1..1]

This operation returns the parent of this MCMDomain
object.

[D59] If this MCMDomain object has no parent, then

a NULL MCMDomainComposite object

SHOULD be returned.

setMCMMgmtDomainParent(

in newParent :

MCMMgmtDomainCompo-

site[1..1])

This operation defines the parent of this MCMDomain
object.

[D60] If this MCMDomain object already has a par-

ent, then an exception SHOULD be raised.

Table 19. Operations of the MCMManagementDomain Class

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 59

At this time, a single aggregation is defined for the MCMManagementDomain class. This aggre-

gation is named MCMMgmtDomainHasMCMMgdEntity, and defines the set of MCMMan-

agedEntities that are contained in this particular MCMManagementDomain. The multiplicity of

this aggregation is 0..1 – 0..*. This means that this aggregation is optional (i.e., the “0” part of the

0..1 cardinality). If this aggregation is instantiated (e.g., the “1” part of the 0..1 cardinality), then

zero or more MCMManagedEntity objects can be aggregated by this particular MCMManage-

mentDomain object. Note that the cardinality on the part side (MCMManagedEntity) is 0..*; this

enables an MCMManagementDomain object to be defined without having to define an associated

MCMManagedEntity object for it to aggregate. Since there are different types of MCMManage-

mentDomain objects as well as different types of MCMManagedEntity objects that can be con-

tained within a given MCMManagementDomain object, the MCMMgmtDomainHasMCMMan-

agedEntity aggregation is realized using an association class, called MCMMgmtDomain-

HasMCMMgdEntityDetail. This enables the semantics of the MCMMgmtDomain-

HasMCMMgdEntity aggregation to be realized using the attributes, operations, and relationships

of the MCMMgmtDomainHasMCMMgdEntityDetail association class.

The Policy Pattern may be used to control which type of MCMManagedEntity objects are con-

tained in a particular MCMManagementDomain object. See Figure 3 for an exemplary illustration

of the Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of

imperative, declarative, and intent policy rules.

This class also participates in a second aggregation, called MCMHasManagementDomain; this is

defined in section 7.6.

7.6.3 MCMMgmtDomainAtomic Class Definition

This is a concrete class, and specializes MCMManagementDomain. Each MCMMgmtDomain-

Atomic has characteristics and behavior that is externally visible.

[R24] This class represents stand-alone MCMManagementDomain objects (i.e., they

MUST NOT contain another MCMMgmtDomain object).

At this time, no attributes are defined for the MCMMgmtDomainAtomic class.

At this time, no operations are defined for the MCMMgmtDomainAtomic class.

At this time, no relationships are defined for the MCMMgmtDomainAtomic class.

7.6.4 MCMMgmtDomainComposite Class Definition

This is a concrete class, and specializes MCMManagementDomain. This class represents a set of

related MCMManagementDomain objects that are organized into a tree structure.

[O20] Each MCMMgmtDomainComposite MAY contain zero or more

MCMMgmtDomainAtomic and/or zero or more MCMMgmtDomainComposite

objects.

At this time, no attributes are defined for the MCMManagementDomainComposite class.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 60

Table 20 defines the operations for the MCMManagementDomainComposite class.

Operation Name Description

getMCMMgmtDomainChild-
List() : MCMManagement-
Domain [1..*]

This operation returns the set of all MCMManagementDomain
objects that are contained in this specific MCMManagement-
DomainComposite object. There are no input parameters to this
operation. This operation returns a list of zero or more MCMMan-
agementDomain objects (i.e., the list is made up of MCMManage-
mentDomainAtomic and/or MCMManagementDomainComposite
objects).

[D61] If this MCMManagementDomainComposite object

has no child objects, then a NULL MCMManage-

mentDomainComposite object SHOULD be re-

turned.

setMCMMgmtDomainChild-
List (childObjectList :
MCMManagementDomain
[1..*])

This operation defines a set of MCMManagementDomain objects
that will be contained by this particular MCMMgmtDomainCom-
posite object. This operation takes a single input parameter,
called childObjectList, which is an array of one or more
MCMManagementDomain objects (i.e., one or more
MCMMgmtDomainAtomic and/or MCMMgmtDomainComposite
objects). This has the effect of creating an instance of the
MCMHasManagementDomain aggregation between each
MCMManagementDomain object in the childObjectList and this
particular MCMMgmtDomainComposite object. Note that this
operation first deletes any existing contained MCMManagement-
Domain objects (and their aggregations and association classes),
and then instantiates a new set of MCMManagementDomain ob-
jects; in doing so, each MCMManagementDomain object is con-
tained within this particular MCMMgmtDomainComposite object
by first, creating an instance of the MCMHasManagementDomain
aggregation, and second, realizing that aggregation instance as an
association class.

[D62] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMHasManage-

mentDomainDetail association class).

setMCMMgmtDomainPar-
tialChildList (childObjectList
: MCMManagementDomain
[1..*])

This operation defines a set of one or more MCMManagement-
Domain objects that are contained within this particular
MCMManagementDomainComposite object WITHOUT affecting
any other existing contained MCMManagementDomain objects
or the objects that are contained in them. This operation takes a
single input parameter, called childObjectList, which is an array of
one or more MCMManagementDomain objects. This has the ef-
fect of creating a set of aggregations between this particular
MCMManagementDomainComposite object and each of the

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 61

MCMManagementDomain objects identified in the childObject-
List.

[D63] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMHasManage-

mentDomainDetail class).

delMCMMgmtDomainChild-
List ()

This operation deletes ALL contained MCMManagementDomain
objects of this particular MCMManagementDomainComposite
object. This has the effect of first, removing the association class,
and second, removing the aggregation, between this MCMMan-
agementDomainComposite object and each MCMManagement-
Domain object that is contained in this MCMManagement-
DomainComposite object. This operation has no input parame-
ters.

delMCMMgmtDomainPar-
tialChildList (
in childObjectList :
MCMManagement-
Domain[1..*])

This operation deletes a set of MCMManagementDomain objects
from this particular MCMManagementDomainComposite object.
This operation takes a single input parameter, called childObject-
List, which is an array of one or more MCMManagementDomain
objects. This has the effect of first, removing the association class
and second, removing the aggregation, between each MCMMan-
agementDomain object specified in the input parameter and this
MCMManagementDomainComposite object. Note that all other
aggregations between this MCMManagementDomainComposite
and other MCMManagementDomain objects that are not identi-
fied in the input parameter are NOT affected.

Table 20. Operations of the MCMManagementDomainComposite Class

The MCMHasManagementDomainComposite class defines a single aggregation, called

MCMHasManagementDomain. This aggregation is used to define the set of MCMManagement-

Domains that are contained within this particular MCMMgmtDomainComposite. Its multiplicity

is defined to be 0..1 – 0..*. This means that this aggregation is optional (i.e., the “0” part of the 0..1

cardinality). If this aggregation is instantiated (e.g., the “1” part of the 0..1 cardinality), then zero

or more MCMManagementDomain objects can be aggregated by this particular MCMManage-

mentDomainComposite object. Note that the cardinality on the part side (MCMManagement-

Domain) is 0..*; this enables an MCMManagementDomainComposite object to be defined without

having to define an associated MCMManagementDomain object for it to aggregate.

The semantics of the MCMHasManagementDomain aggregation is realized using an association

class, called MCMHasManagementDomainDetail. This enables the semantics of the MCMHas-

ManagementDomain aggregation to be realized using the attributes, operations, and relationships

of the MCMHasManagementDomainDetail association class.

The Policy Pattern may be used to control which specific MCMManagementDomain objects are

contained within a given MCMManagementDomainComposite object for a given context. See

Figure 3 for an exemplary illustration of the Policy Pattern. Note that MCMPolicyStructure is an

abstract class that is the superclass of imperative, declarative, and intent policy rules.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 62

7.7 MCMBusinessObject Class Hierarchy

The MCMBusinessObject class has two subclasses, as shown in Figure 11.

Figure 11. MCMBusinessObject Subclasses

MCMBusinessObject is a subclass of MCMEntity, and is a sibling of MCMManagedEntity. The

MCM models business objects differently than other types of managed entities, because: (1) their

lifecycle is different, and (2) their semantics are different. This class is the superclass of concepts

such as Orders and TroubleTickets.

Table 21 defines the functions of the MCMBusinessObject class and its subclasses, and relates

them to MEF55.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 63

Name of Class Function Relation to MEF 55

MCMBusinessObject

Defines the abstract concept of

business objects that are types

of MCMEntities, but not types

of MCMManagedEntities. Ex-

amples include Order, Trou-

bleTicket, and Report.

Required by all MEF55

functional components

that interact with Business

Applications and/or Cus-

tomers.

MCMOrderStructure

Defines the abstract concept of

an Order, including common at-

tributes, operations, and rela-

tionships.

Required by all MEF55

functional components

that interact with Orders.

MCMOrderAtomic

Represents Orders that are mod-

eled as a single, stand-alone,

manageable object.

The most common type of

Order.

MCMOrderComposite

Represents Orders that are mod-

eled as a hierarchy of Orders.

This produces three objects: the

Composite Order, the set of

constituent Atomic Orders, and

the combination of these.

Accommodates nested

Orders and Orders that

form a tree-like hierarchy.

MCMOrderStructure

HasMCMOrderItemDetail

An association, realized as an

association class, that defines

the semantics of an MCMOrder-

Structure having an

MCMOrderItem.

Provides management

control of attaching and

removing parts of a Com-

posite Order.

MCMOrderItem

Represents a set of MCMEnti-

ties that are contained in a par-

ticular MCMOrderAtomic or an

MCMOrderComposite object.

Represents parts of an Or-

der

Table 21. Functions of the MCMBusinessObject and its Subclasses

7.7.1 MCMBusinessObject Class Definition

This is an abstract class, and specializes MCMEntity. It represents business objects that are pro-

duced by the business but are not managed in the way that MCMManagedEntity objects are. Ex-

amples include Orders, TroubleTickets, and Reports.

Note that concepts like the set of MCMPartyRoles that interact with this MCMBusinessObject,

and the time period in which this MCMBusinessObject is valid, are realized as relationships, not

attributes. More specifically, the former is provided by MCMEntityHasMCMMetaData (see sec-

tion 7.4), since MCMBusinessObject is a subclass of MCMEntity and therefore inherits this ag-

gregation. The latter is already defined in MCMMetaData (see section 7.11).

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 64

Table 22 defines the attributes of the MCMBusinessObject class. Most attributes will likely be

realized using relationships and/or operations. For example, concepts like the Buyer and Seller

object identifiers, along with Buyer order, implementation, and technical contacts [15] will be de-

fined using a combination of relationships and operations.

Attribute Name

Manda-

tory? Description

mcmBusinessPur-

pose : String[0..1]
NO

This is a string attribute. It contains a textual description
of the business purpose of this MCMBusinessObject.

[D64] If an object does not have a value for the mcmCom-

monName attribute, then an empty string

SHOULD be used.

mcmBizObjCrea-

tionDate : Time-

AndDate[0..1]

NO

This is a TimeAndDate attribute, and contains the date
and time of the manufacturing of this object.

[D65] This attribute SHOULD have a complete and valid

time and/or date.

[O21] The implementation MAY ensure that the fields in

this data type are set to an appropriate default value.

Table 22. Attributes of the MCMBusinessObject Class

Table 23 defines the operations of the MCMBusinessObject class.

Operation Name Description

getMCMBusinessPurpose()

: String[1..1]

This operation returns the mcmBusinessPurpose textual at-

tribute for this particular MCMBusinessObject. There are no

input parameters to this operation.

[D66] If a business purpose is not defined, then an empty

string SHOULD be returned.

setMCMBusinessPur-

pose(in bizPurpose:

String[1..1])

This operation sets the mcmBusinessPurpose textual attribute

for this particular MCMBusinessObject. There is a single in-

put parameter, of type String, which contains the new text of

the business purpose.

[D67] If a business purpose is not defined, then an empty

string SHOULD be used.

getMCMDateCreated() :

TimeAndDate[1..1]

This is a TimeAndDate attribute, and contains the date and

time that this object was created.

[D68] This attribute SHOULD have a complete and valid

time and/or date.

[O22] The implementation MAY ensure that the fields in this

data type are set to an appropriate default value.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 65

setMCMDateCreated (in

newCreationDate: Time-

AndDate[1..1])

This is a TimeAndDate attribute, and contains the date and

time that this object was created.

Table 23. Operations of the MCMBusinessObject Class

At this time, no relationships are defined for the MCMBusinessObject class.

7.7.2 MCMOrderStructure Class Definition

This is an abstract class, and specializes MCMBusinessObject. The purpose of this class is to en-

able the composite pattern to be used to define stand-alone and nested orders (represented by

MCMOrderAtomic and MCMOrderComposite, respectively). It represents a written commitment

to procure an MCMProduct from a Seller by a Buyer. The Seller and Buyer may be MCMParty or

(preferably) MCMPartyRole objects. An MCMOrderStructure object (i.e., an MCMOrderAtomic

or an MCMOrderComposite) may contain zero or more MCMOrderItem objects.

Table 24 defines the attributes of the MCMOrderStructure class. These are compliant with the use

cases in [15].

Attribute Name

Manda-

tory? Description

mcmIsPriorityExpedited :

Boolean[1..1]
YES

This is a Boolean attribute that indicates if this

Order is being expedited or not. The default value

of this attribute is FALSE.

[R25] IFF the value of this Boolean attribute is

FALSE, then the implementation MUST

ignore the value of the mcmOrderPriority

class attribute.

[R26] IFF the value of this Boolean attribute is

TRUE, the the implementation MUST use

the value of the mcmOrderPriority class at-

tribute as the priority of this Order (if any).

mcmOrderCompleteActual

: [0..1]
NO

This is a TimeAndDate attribute. It defines the
date and time that this order was completed by
the Seller (e.g., MCMServiceProvider or
MCMPartner). It is optional to facilitate the case
where an order has been issued but has not
been complete. It is based on [15].

[D69] This attribute SHOULD have a complete

and valid time and/or date.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 66

[O23] The implementation MAY ensure that the

fields in this data type are set to an appro-

priate default value.

mcmOrderComplete-

Request : Time-

AndDate[1..1]

YES

This is a TimeAndDate attribute. It defines the
date and time by which the Buyer (e.g.,
MCMCustomer or MCMPartner) requested that
this order be completed. It is based on [15].

[D70] This attribute SHOULD have a complete

and valid time and/or date.

[O24] The implementation MAY ensure that the

fields in this data type are set to an appro-

priate default value.

mcmOrderCreateDate :

TimeAndDate[1..1]
YES

This is a TimeAndDate attribute. It defines the
date and time that this order was created. It is
based on [15].

[D71] This attribute SHOULD have a complete

and valid time and/or date.

[O25] The implementation MAY ensure that the

fields in this data type are set to an appro-

priate default value.

mcmOrderDesiredRe-

sponse : OrderDesiredRe-

sponse[1..1]

YES

This enumeration defines the desired response
that the Buyer wishes to receive from the Seller.
It is based on [15]. The values are defined in the
OrderDesiredResponse enumeration, and in-
clude:

 ERROR

 INIT

 CONFIRMATION AND ENGINEERING DESIGN

 CONFIRMATION ONLY

 NONE

mcmOrderID : String[1..1] YES

This is a string attribute. It contains a unique
identifier for the order that is generated by
the Seller when the order is initially accepted.

[R27] This attribute MUST NOT be used as a

naming attribute (i.e., to uniquely iden-

tify an instance of the object).

[R28] The mcmOrderID MUST be provided

by the Seller on all response messages.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 67

[R29] The mcmOrderID MUST remain the

same for the life of the Order. [15]

mcmOrderPriority : Inte-

ger[0..1]
NO

This is a non-negative Integer attribute, which in-
dicates the relative priority of this Order com-
pared to other Orders between this particular
Buyer and Seller. The meaning of this attribute is
subject to agreement between the Buyer and
the Seller. [15]

[R30] IFF the value of the mcmIsPriorityExpe-

dited class attribute is FALSE, then the im-

plementation MUST ignore the value of

this class attribute.

[R31] IFF the value of the mcmIsPriorityExpe-

dited class attribute is TRUE, then the im-

plementation MUST assign the priority of

this Order to the value of this class attrib-

ute.

[O26] If two or more Orders have the same value

of this attribute, then the implementation

MAY process them in any order, as long

as each is processed in appropriate numer-

ical order of the mcmOrderPriority attrib-

ute value with respect to all other Orders.

[R32] If an Order does not have a value for this

attribute, then the implementation MUST

process it (and any other similar Orders)

after all Orders that do have a valid value

for this attribute.

mcmOrderStartRequest :

TimeAndDate[1..1]
YES

This is a TimeAndDate attribute. It defines the
date and time that the Buyer (e.g., MCMCus-
tomer or MCMPartner) would like work on this
order to start. It is based on [15].

[D72] This attribute SHOULD have a complete

and valid time and/or date.

[O27] The implementation MAY ensure that the

fields in this data type are set to an appro-

priate default value.

mcmOrderType : Order-

Type[1..1]
YES

This is a mandatory enumeration, which defines
the type of order that this instance is. It is based
on the use cases in [15], where it is called ORDER

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 68

ACTIVITY. The values are defined in the Order-
Type enumeration, and include:

 ERROR

 INIT

 CREATE

 INSTALL

 CHANGE

 DISCONNECT

 QUERY

 AMEND

 CANCEL

 NOTIFY

 COMPLETE

 NO_CHANGE

Table 24. Attributes of the MCMOrderStructure Class

Table 25 defines the operations of the MCMOrderStructure class.

Operation Name Description

getMCMIsPriorityExpe-

dited() : Boolean[1..1]

This operation retrieves the value of the mcmIsPriorityExpe-
dited class attribute. The default value of this attribute is
FALSE. IFF the value of this Boolean attribute is FALSE, then the
mcmOrderPriority class attribute is irrelevant. Otherwise, the
priority of this Order (if any) is defined by the value of the
mcmOrderPriority attribute. This operation takes no input pa-
rameters, and returns a Boolean. It is based on [15].

[R33] IFF the value of the mcmIsPriorityExpedited class attrib-

ute is FALSE, then the implementation MUST ignore the

value of the mcmIsOrderPriority class attribute.

[R34] IFF the value of the mcmIsPriorityExpedited class attrib-

ute is TRUE, then the implementation MUST assign the

priority of this Order to the value of the mcmIsOrder-

Priority class attribute.

setMCMIsPriorityExpe-

dited(in isExpedited : Bool-

ean[1..1])

This operation defines the value of the mcmIsPriorityExpedited
class attribute. The default value of this attribute is FALSE. IFF
the value of this Boolean attribute is FALSE, then the
mcmOrderPriority class attribute is irrelevant. Otherwise, the
priority of this Order (if any) is defined by the value of the

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 69

mcmOrderPriority attribute. This operation takes a single input
parameter, called isExpedited, which is a Boolean. It is based
on [15].

[R35] IFF the value of the mcmIsPriorityExpedited class attrib-

ute is FALSE, then the implementation MUST ignore the

value of the mcmIsOrderPriority class attribute.

[R36] IFF the value of the mcmIsPriorityExpedited class attrib-

ute is TRUE, then the implementation MUST assign the

priority of this Order to the value of the mcmIsOrder-

Priority class attribute.

getMCMOrderCom-

pleteActual() :

TimeAndDate[1..1]

This operation returns the time and date (as a TimeAndDate
data type) that this order was completed by the Seller (e.g.,
MCMServiceProvider or MCMPartner). There are no input pa-
rameters. It is based on [15].

[D73] This attribute SHOULD have a complete and valid time

and/or date.

[O28] The implementation MAY ensure that the fields in this

data type are set to an appropriate default value.

setMCMOrderCom-

pleteActual(in dateCom-

pleted : Time-

AndDate[1..1])

This operation defines the time and date (as a TimeAndDate
data type) that this order was completed by the Seller (e.g.,
MCMServiceProvider or MCMPartner). There is a single input
parameter, called dateCompleted (of data type TimeAndDate)
that contains the new time and date information. It is based on
[15].

getMCMOrderComplete-

Request() : Time-

AndDate[1..1]

This operation returns the time and date (as a TimeAndDate
data type) that the Buyer (e.g., MCMCustomer or MCMPart-
ner) requested that this order be completed. There are no in-
put parameters. It is based on [14].

[D74] This attribute SHOULD have a complete and valid time

and/or date.

[O29] The implementation MAY ensure that the fields in this

data type are set to an appropriate default value.

setMCMOrderComplete-

Request(in dateRequested :

TimeAndDate[1..1])

This operation defines the time and date (as a TimeAndDate
data type) that this order was requested to be completed by
the Buyer (e.g., MCMCustomer or MCMPartner). There is a sin-
gle input parameter, called dateRequested (of data type Time-
AndDate) that contains the new date and time information. It
is based on [15].

getMCMOrderCre-

ateDate() : Time-

AndDate[1..1]

This operation returns the time and date (as a TimeAndDate
data type) that this order was created by the Buyer. There are
no input parameters. It is based on [15].

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 70

[D75] This attribute SHOULD have a complete and valid time

and/or date.

[O30] The implementation MAY ensure that the fields in this

data type are set to an appropriate default value.

setMCMOrderCre-

ateDate(in dateCreated :

TimeAndDate[1..1])

This operation defines the time and date (as a TimeAndDate
data type) that this order was requested to be completed by
the Buyer (e.g., MCMCustomer or MCMPartner). There is a sin-
gle input parameter, called dateRequested (of data type Time-
AndDate) that contains the new time and date information. It
is based on [15].

getMCMOrderDesiredRe-

sponse() : OrderDesired-

Response[1..1]

This operation retrieves the desired response that the Buyer
wishes to receive from the Seller. This operation takes no input
parameters, and returns a value from the OrderDesiredRe-
sponse enumeration. It is based on [15].

setMCMOrderDesiredRe-

sponse(in newResponse :

OrderDesiredRe-

sponse[1..1])

This operation defines desired response that the Buyer wishes
to receive from the Seller. This operation takes a single input
parameter, the OrderDesiredResponse enumeration, which
contains a value describing the desired response from the
Seller to the Buyer. It is based on [15].

getMCMOrderID() :

String[1..1]

This operation retrieves the order ID. It is based on [15].

[R37] This attribute MUST NOT be used as a naming attribute

(i.e., to uniquely identify an instance of the object).

[R38] This MUST be generated by the Seller when the order

was initially accepted.

[R39] This attribute MUST NOT change through the life of the

Order.

setMCMOrderID(in

newOrderID : String[1..1])

This operation defines a new order ID. This operation takes a
single input parameter, called newOrderID, of data type string.
It is based on [15].

[R40] This attribute MUST NOT be used as a naming attribute

(i.e., to uniquely identify an instance of the object).

[R41] This MUST be generated by the Seller when the order

was initially accepted.

[R42] This attribute MUST NOT change through the life of the

Order.

getMCMOrderPriority() :

Integer[1..1]

This operation retrieves the value of the mcmOrderPriority
class attribute, which indicates the relative priority of this Or-
der compared to other Orders between this particular Buyer
and Seller. Orders with a higher priority execute before Orders

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 71

with a lower priority; Orders of equal priority may execute in
any order. Note that this value is only relevant if the value of
the mcmIsPriorityExpedited class attribute is TRUE. This opera-
tion takes no input parameters, and returns an Integer. It is
based on [15].

[R43] IFF the value of the mcmIsPriorityExpedited class attrib-

ute is FALSE, then the implementation MUST ignore the

value of this class attribute.

[R44] IFF the value of the mcmIsPriorityExpedited class attrib-

ute is TRUE, then the implementation MUST assign the

priority of this Order to the value of this class attribute.

[O31] If two or more Orders have the same value of this attrib-

ute, then the implementation MAY process them in any

order, as long as each is processed in appropriate numer-

ical order of the mcmOrderPriority attribute value with

respect to all other Orders.

[R45] If an Order does not have a value for this attribute, then

the implementation MUST process it (and any other sim-

ilar Orders) after all Orders that do have a valid value for

this attribute.

setMCMOrderPriority(in

newPriority : Integer[1..1])

This operation defines the value of the mcmOrderPriority class
attribute. IFF the value of the mcmIsPriorityExpedited class at-
tribute is FALSE, then the value of this class attribute is irrele-
vant. Otherwise, the priority of this Order (if any) is defined by
the value of this attribute. This operation takes a single input
parameter, called newPriority, which is an Integer. It is based
on [15].

[R46] IFF the value of the mcmIsPriorityExpedited class attrib-

ute is FALSE, then the implementation MUST ignore the

value of this class attribute.

[R47] IFF the value of the mcmIsPriorityExpedited class attrib-

ute is TRUE, then the implementation MUST assign the

priority of this Order to the value of this class attribute.

[O32] If two or more Orders have the same value of this attrib-

ute, then the implementation MAY process them in any

order, as long as each is processed in appropriate numer-

ical order of the mcmOrderPriority attribute value with

respect to all other Orders.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 72

[R48] If an Order does not have a value for this attribute, then

the implementation MUST process it (and any other sim-

ilar Orders) after all Orders that do have a valid value for

this attribute.

getMCMOrderStartRe-

quest() : Time-

AndDate[1..1]

This operation returns the time and date (as a TimeAndDate
data type) that the Buyer (e.g., MCMCustomer or MCMPart-
ner) would like work on this order to start. It is based on [15].

[D76] This attribute SHOULD have a complete and valid time

and/or date.

[O33] The implementation MAY ensure that the fields in this

data type are set to an appropriate default value.

setMCMOrderStartRe-

quest(in newStartTime :

TimeAndDate[1..1])

This operation defines the time and date (as a TimeAndDate
data type) that work on this order was requested to be started
by the Buyer (e.g., MCMCustomer or MCMPartner). There is a
single input parameter, called newStartTime (of data type
TimeAndDate) that contains the new date and time infor-
mation that work on this order should start. It is based on [15].

getMCMOrderType : Or-

derType[1..1]

This operation retrieves the value of the mcmOrderType class
attribute, which indicates the type of Order that this instance
is. The type of work to be done in this order is defined by an
enumeration, called OrderType. This operation takes no input
parameters, and returns a literal from the OrderType enumer-
ation. It is based on [15].

setMCMOrderType(in

newType : Order-

Type[1..1])

This operation defines the value of the mcmOrderType class
attribute, which indicates the type of Order that this instance
is. The type of work to be done in this order is defined by an
enumeration, called OrderType. This operation takes a single
input parameter, called newType, which is an OrderType enu-
meration that defines the different types of work that this Or-
der can do. It is based on [15].

getMCMOrderStructure-

Parent() : MCMOrder-

Composite[1..1]

This operation returns the parent of this MCMOrderStructure
object. This operation takes no input parameters.

[D77] If this MCMOrderStructure object has no parent, then a

NULL MCMOrderComposite object SHOULD be re-

turned.

setMCMOrderStructure-

Parent(in newParent :

MCMOrderCompo-

site[1..1])

This operation defines the parent of this MCMOrderStructure
object. The parent is defined in the input parameter, called
newParent, and is of type MCMOrderComposite.

[D78] If this MCMOrderStructure object already has a parent,

then an exception SHOULD be raised.

getMCMOrderItemList() :

MCMOrderItem[1..*]

This operation returns the set of MCMOrderItem objects that
are currently contained by this MCMOrderStructure object.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 73

 The return value is an array of one or more objects of type
MCMOrderItem. This operation follows all instances of the
MCMOrderStructureHasMCMOrderItem aggregation (i.e., from
this MCMOrderStructure object to each MCMOrderItem object
that it contains), and returns the associated MCMOrderItem
objects as an array.

[D79] If this object does not have any attached MCMOrder-

Item objects, then a NULL MCMOrderItem object

SHOULD be returned.

setMCMOrderItemList (

in newOrderItem:

MCMOrderItem [1..*])

This operation defines the complete set of MCMOrderItem ob-
jects that will be contained by this MCMOrderStructure object.
This operation takes a single input parameter, called
newOrderItem, which is an array of one or more MCMOrder-
Item objects. This operation creates a set of aggregations be-
tween this particular MCMOrderStructure object and the set of
MCMOrderItem objects identified in the input parameter.
Note that this operation first deletes any existing attached
MCMOrderItem objects (and their aggregations and associa-
tion classes), and then instantiates a new set of MCMOrder-
Item objects; in doing so, each MCMOrderItem object is at-
tached to this particular MCMOrderStructure object by first,
creating an instance of the MCMOrderStructure-
HasMCMOrderItem aggregation, and second, realizing that ag-
gregation instance as an association class.

[D80] Each created aggregation SHOULD have an association

class (i.e., an instance of the MCMOrderStructure-

HasMCMOrderItemDetail class).

setMCMOrderItemPartial-

List (

in newOrderItemPartial-

List: MCMOrderItem

[1..*])

This operation defines a set of one or more MCMOrderItem
objects that should be attached to this particular MCMOrder-
Structure object WITHOUT affecting any other existing con-
tained MCMOrderItem objects or the objects that are con-
tained in them. This operation takes a single input parameter,
called newOrderItemPartialList, which is an array of one or
more MCMOrderItem objects. This operation creates a set of
aggregations between this particular MCMOrderStructure ob-
ject and the set of MCMOrderItem objects identified in the in-
put parameter.

[D81] Each created aggregation SHOULD have an association

class (i.e., an instance of the MCMOrderStructure-

HasMCMOrderItemDetail class).

delMCMOrderItemList ()

This operation deletes ALL instances of attached MCMOrder-
Item objects for this particular MCMOrderStructure object.
This operation first removes the association class, and second,

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 74

removes the aggregation, between this MCMOrderStructure
object and each MCMOrderItem object that is attached to this
MCMOrderStructure object. This operation has no input pa-
rameters.

delMCMOrderItemPar-

tialList (

in orderItemPartialList :

MCMOrderItem[1..*])

This operation deletes a set of MCMOrderItem objects from
this particular MCMOrderStructure object. This operation
takes a single input parameter, called orderItemPartialList,
which is an array of one or more MCMOrderItem objects. This
operation first, removes the association class and second, re-
moves the aggregation, between each MCMOrderItem object
specified in the input parameter and this MCMOrderStructure
object. Note that all other aggregations between this
MCMOrderStructure object and other MCMOrderItem objects
that are not specified in the input parameter are NOT affected.

Table 25. Operations of the MCMOrderStructure Class

The MCMOrderStructureHasMCMOrderItem aggregation defines the set of MCMOrderItems that

this MCMOrderStructure (i.e., an MCMOrderAtomic or an MCMOrderComposite) can contain.

All subclasses of MCMOrderStructure inherit this relationship. The multiplicity of this aggrega-

tion is 0..1 – 0..*. This means that this aggregation is optional (i.e., the “0” part of the 0..1 cardi-

nality). If this aggregation is instantiated (e.g., the “1” part of the 0..1 cardinality), then zero or

more MCMOrderItem objects can be aggregated by this particular MCMOrderStructure object.

Note that the cardinality on the part side (MCMOrderItem) is 0..*; this enables an MCMOrder-

Structure object to be defined without having to define an associated MCMOrderItem object for it

to aggregate. The semantics of this aggregation are defined by the MCMOrderStructure-

HasMCMOrderItemDetail association class. This enables a particular set of MCMOrderItems to

be attached to a given MCMOrderStructure. The Policy Pattern may be used to control which

specific MCMOrderItem objects are attached to a given MCMOrderStructure object for a given

context. See Figure 3 for an exemplary illustration of the Policy Pattern. Note that MCMPoli-

cyStructure is an abstract class that is the superclass of imperative, declarative, and intent policy

rules.

This class participates in a second aggregation, called the MCMHasOrder aggregation; see section

7.7.4. The Policy Pattern may be used to control which specific MCMOrderStructure objects are

contained within a given MCMOrderComposite for a given context. See Figure 3 for an exemplary

illustration of the Policy Pattern. The Policy Pattern may be used to control which specific

MCMOrderStructure objects are contained within a given MCMOrderComposite for a given con-

text. See Figure 3 for an exemplary illustration of the Policy Pattern. Note that MCMPolicyStruc-

ture is an abstract class that is the superclass of imperative, declarative, and intent policy rules.

7.7.3 MCMOrderAtomic Class Definition

This is a concrete class, and specializes MCMOrderStructure.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 75

[R49] This class represents stand-alone MCMOrderStructure objects (i.e., they

MUST NOT contain another MCMOrderStructure object).

[O34] Each MCMOrderAtomic MAY contain one or more MCMOrderItems.

At this time, no attributes are defined for the MCMOrderAtomic class.

At this time, no operations are defined for the MCMOrderAtomic class.

At this time, no relationships are defined for the MCMOrderAtomic class. Note that it inherits the

MCMOrderStructureHasMCMOrderItem aggregation from MCMOrderStructure.

7.7.4 MCMOrderComposite Class Definition

This is a concrete class, and specializes MCMOrderStructure. This class represents a set of related

MCMOrderStructure objects that are organized into a tree structure. Note that an MCMOrderCom-

posite may also contain one or more MCMOrderItem objects.

[O35] Each MCMOrderComposite MAY contain zero or more MCMOrderAtomic

and/or zero or more MCMOrderComposite objects.

[O36] Each MCMOrderComposite MAY contain one or more MCMOrderItems.

At this time, no attributes are defined for the MCMOrderComposite class. Most attributes will

likely be realized using relationships and/or operations. For example, a query to an instance of the

MCMOrderComposite class to provide its set of contained MCMOrderStructure objects will be

done by using class operations; the MCMOrderComposite instance will query each of its contained

MCMOrderStructure objects (which will in turn call their operations to acquire their details, in-

cluding MCMOrderItems), aggregate and organize the information, and provide that information

in its operation response.

Table 26 defines the following operations for this class:

Operation Name Description

getMCMOrderStructure-

ChildList() : MCMOrder-

Structure [1..*]

This operation returns the set of all MCMOrderStructure ob-
jects that are contained in this specific MCMOrderComposite
object. There are no input parameters to this operation. This
operation returns a list of one or more MCMOrderStructure ob-
jects (i.e., the list is made up of MCMOrderAtomic and/or
MCMOrderComposite objects.

[D82] If this object does not have any attached MCMOrder-

Structure objects, then a NULL MCMOrderStructure ob-

ject SHOULD be returned.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 76

setMCMOrderStructure-

ChildList(in childObject-

List : MCMOrderStruc-

ture [1..*])

This operation defines a set of MCMOrderStructure objects that
will be contained by this particular MCMOrderComposite ob-
ject. This operation takes a single input parameter, called chil-
dObjectList, which is an array of one or more MCMOrderStruc-
ture objects (i.e., one or more MCMOrderAtomic and/or
MCMOrderComposite objects). This has the effect of creating
an instance of the MCMHasOrder aggregation between each
MCMOrderStructure object in the childObjectList and this par-
ticular MCMOrderComposite object. Note that this operation
first deletes any existing contained MCMOrderStructure objects
(and their aggregations and association classes), and then in-
stantiates a new set of MCMOrderStructure objects; in doing
so, each MCMOrderStructure object is contained within this
particular MCMOrderComposite object by first, creating an in-
stance of the MCMHasOrder aggregation, and second, realizing
that aggregation instance as an association class.

[D83] Each created aggregation SHOULD have an association

class (i.e., an instance of the MCMHasOrderDetail asso-

ciation class).

setMCMOrderStruc-

turePartialChildList(

childObjectList :

MCMOrderStructure

[1..*])

This operation defines a set of one or more MCMOrderStruc-
ture objects that should be contained within this particular
MCMOrderComposite object WITHOUT affecting any other ex-
isting contained MCMOrderStructure objects or the objects that
are contained in them. This operation takes a single input pa-
rameter, called childObjectList, which is an array of one or more
MCMOrderStructure objects. This has the effect of creating a
set of aggregations between this particular MCMOrderCompo-
site object and each of the MCMOrderStructure objects identi-
fied in the childObjectList.

[D84] Each created aggregation SHOULD have an association

class (i.e., an instance of the MCMHasOrderDetail class).

delMCMOrderCom-

positeChildren()

This operation deletes ALL contained MCMOrderStructure ob-
jects of this particular MCMOrderComposite object. This has
the effect of first, removing the association class, and second,
removing the aggregation, between this MCMOrderComposite
object and each MCMOrderStructure object that is contained in
this MCMOrderComposite object. This operation has no input
parameters.

delMCMOrderCom-

positePartialChildList(

in childObjectList :

MCMLocation[1..*])

This operation deletes a set of MCMOrderStructure objects
from this particular MCMOrderComposite object WITHOUT af-
fecting any other existing contained MCMOrderStructure ob-
jects or the objects that are contained in them. This operation
takes a single input parameter, called childObjectList, which is

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 77

an array of one or more MCMOrderStructure objects. This has
the effect of first, removing the association class and second,
removing the aggregation, between each MCMOrderStructure
object specified in the input parameter and this MCMOrder-
Composite object. Note that all other aggregations between
this MCMOrderComposite and other MCMOrderStructure ob-
jects that are not identified in the input parameter are NOT af-
fected.

Table 26. Operations for the MCMOrderComposite Class

The MCMOrderComposite class defines a single aggregation, called MCMHasOrder. This aggre-

gation is used to define the set of MCMOrderStructure objects that are contained within this par-

ticular MCMOrderComposite object. Its multiplicity is defined to be 0..1 – 0..*. This means that

this aggregation is optional (i.e., the “0” part of the 0..1 cardinality). If this aggregation is instan-

tiated (e.g., the “1” part of the 0..1 cardinality), then zero or more MCMOrderStructure objects can

be aggregated by this particular MCMOrderComposite object. Note that the cardinality on the part

side (MCMOrderStructure) is 0..*; this enables an MCMOrderComposite object to be defined

without having to define an associated MCMOrderStructure object for it to aggregate.

The semantics of the MCMHasOrder aggregation is realized using an association class, called

MCMHasOrderDetail. This enables the semantics of the MCMHasOrder aggregation to be real-

ized using the attributes, operations, and relationships of the MCMHasOrderDetail association

class.

The Policy Pattern may be used to control which specific MCMOrderStructure objects are con-

tained within a given MCMOrderComposite object for a given context. See Figure 3 for an exem-

plary illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract class that is

the superclass of imperative, declarative, and intent policy rules.

7.7.5 MCMOrderItem Class Definition

This is a concrete class, and specializes MCMBusinessObject. It represents a set of MCMEntities

tha can be ordered by a Buyer from a Seller, and are contained in a particular MCMOrderStructure

object.

Table 27 defines the attributes of the MCMOrderItem class.

Attribute Name Manda-

tory?

Description

mcmOrderItemCom-

pleteActual : Time-

AndDate[0..1]

NO This is a TimeAndDate attribute. It defines the
date and time that this MCMOrderItem was
completed by the Seller (e.g.,
MCMServiceProvider or MCMPartner). This
enables individual MCMOrderItems to be

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 78

tracked. It is optional to facilitate the case
where an order has been issued but has not
been complete. It is based on [15].

[D85] This attribute SHOULD have a com-

plete and valid time and/or date.

[O37] The implementation MAY ensure that

the fields in this data type are set to an

appropriate default value.

mcmOrderItemComplete-

Request : TimeAndDate[1..1]

YES This is a TimeAndDate attribute. It defines the
date and time by which the Buyer (e.g.,
MCMCustomer or MCMPartner) requested
that this MCMOrderItem be completed. It is
based on [15].

[D86] This attribute SHOULD have a com-

plete and valid time and/or date.

[O38] The implementation MAY ensure that

the fields in this data type are set to an

appropriate default value.

mcmOrderItemDesiredRe-

sponse : OrderDesiredRe-

sponse[1..1]

YES This is a mandatory enumeration, which de-
fines the desired response that the Buyer
wishes to receive from the Seller concerning
this particular MCMOrderItem. It is based on
[15]. The values are defined in the OrderDe-
siredResponse enumeration, and includes:
 ERROR
 INIT
 CONFIRMATION AND ENGINEERING DESIGN
 CONFIRMATION ONLY
 NONE

mcmIsOrderItemPriorityEx-

pedited : Boolean[1..1]
YES

This is a Boolean attribute that indicates if this
OrderItem is being expedited or not. The de-
fault value of this attribute is FALSE. IFF the
value of this Boolean is FALSE, then the
mcmOrderItemPriority class attribute is irrele-
vant. Otherwise, the priority of this OrderItem
(if any) is defined by the value of the
mcmOrderItemPriority attribute. It is based
on [15].

[R50] IFF the value of the mcmIsPriorityEx-

pedited class attribute is FALSE, then

the implementation MUST ignore the

value of this class attribute.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 79

[R51] IFF the value of the mcmIsPriorityEx-

pedited class attribute is TRUE, then the

implementation MUST assign the prior-

ity of this Order to the value of this class

attribute.

[O39] If two or more Orders have the same

value of this attribute, then the imple-

mentation MAY process them in any

order, as long as each is processed in ap-

propriate numerical order of the

mcmOrderPriority attribute value with

respect to all other Orders.

[R52] If an Order does not have a value for this

attribute, then the implementation

MUST process it (and any other similar

Orders) after all Orders that do have a

valid value for this attribute.

mcmOrderItemPriority : In-

teger[1..1]
NO

This is a non-negative Integer attribute, which
indicates the relative priority of this Order
compared to other Orders between this par-
ticular Buyer and Seller. The meaning of this
attribute is subject to agreement between the
Buyer and the Seller. [15]

[R53] IFF the value of the mcmIsPriorityEx-

pedited class attribute is FALSE, then

the implementation MUST ignore the

value of this class attribute.

[R54] IFF the value of the mcmIsPriorityEx-

pedited class attribute is TRUE, then the

implementation MUST assign the prior-

ity of this Order to the value of this class

attribute.

[O40] If two or more Orders have the same

value of this attribute, then the imple-

mentation MAY process them in any

order, as long as each is processed in ap-

propriate numerical order of the

mcmOrderPriority attribute value with

respect to all other Orders.

[R55] If an Order does not have a value for this

attribute, then the implementation

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 80

MUST process it (and any other similar

Orders) after all Orders that do have a

valid value for this attribute.

mcmOrderItemType : Order-

Type[1..1]

YES This is a mandatory enumeration, which de-
fines the type of MCMOrderItem that this in-
stance is. It is based on the use cases in [15].
The values are defined in the OrderType enu-
meration, and include:
 ERROR
 INIT
 CREATE
 INSTALL
 CHANGE
 DISCONNECT
 QUERY
 AMEND
 CANCEL
 NOTIFY
 COMPLETE
 NO_CHANGE

Table 27. Attributes of the MCMOrderItem Class

Table 28 defines the operations for this class:

Operation Name Description

getMCMOrderItem-

CompleteActual() :

TimeAndDate[1..1]

This operation returns the date and time that this MCMOrderItem
was completed by the Seller (e.g., MCMServiceProvider or
MCMPartner). There are no input parameters to this operation.

[D87] This attribute SHOULD have a complete and valid time

and/or date.

[O41] The implementation MAY ensure that the fields in this data

type are set to an appropriate default value.

setMCMOrderItem-

CompleteActual(in new-

CompletionDate :

TimeAndDate[1..1])

This operation defines the time and date (as a TimeAndDate data
type) that the Buyer (e.g., MCMCustomer or MCMPartner) re-
quested that this MCMOrderItem be completed. There is a single
input parameter, called newCompletionDate (of data type Time-
AndDate) that contains the new date and time information that
this order should be finished. It is based on [15].

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 81

getMCMOrderItem-

CompleteRequest() :

TimeAndDate[1..1]

This operation returns the date and time that the Buyer (e.g.,
MCMCustomer or MCMPartner) requested that this MCMOrder-
Item be completed. There are no input parameters to this opera-
tion.

[D88] This attribute SHOULD have a complete and valid time

and/or date.

[O42] The implementation MAY ensure that the fields in this data

type are set to an appropriate default value.

setMCMOrderItem-

CompleteRequest(in

newCompletionDate :

TimeAndDate[1..1])

This operation defines the time and date (as a TimeAndDate data
type) that the Buyer (e.g., MCMCustomer or MCMPartner) re-
quested that this MCMOrderItem be completed. There is a single
input parameter, called newRequestDate (of data type Time-
AndDate) that contains the new date and time information that
this order is requested to be finished. It is based on [15].

getMCMOrder-

ItemDesiredResponse() :

OrderDesiredRe-

sponse[1..1]

This operation retrieves the value of the mcmOrderItemDesire-
dRe-sponse class attribute, which defines the desired response
that the Buyer wishes to receive from the Seller concerning this
particular MCMOrderItem. This operation takes no input parame-
ters, and returns a value from the OrderDesiredResponse enumer-
ation. It is based on [15].

setMCMOrder-

ItemDesiredResponse(in

newResponse : Order-

DesiredResponse[1..1])

This operation defines the value of the mcmOrderItemDesiredRe-
sponse class attribute, which indicates the desired response that
the Buyer wishes to receive from the Seller concerning this partic-
ular MCMOrderItem. This operation takes a single input parame-
ter, called newResponse, which is an OrderDesiredResponse enu-
meration. It is based on [15].

getMCMIsOrderItem-

PriorityExpedited() :

Boolean[1..1]

This operation retrieves the value of the mcmOrderItemIsPriority-
Expedited class attribute. IFF the value of this Boolean is FALSE,
then the mcmOrderItemPriority class attribute is irrelevant. Other-
wise, the priority of this OrderItem (if any) is defined by the value
of the mcmOrderItemPriority attribute. This operation takes no in-
put parameters, and returns a Boolean indicating true (if the
MCMOrderItem should be expedited) or false. It is based on [15].

[R56] IFF the value of this class attribute is FALSE, then the im-

plementation MUST ignore the value of the mcmIsOrder-

ItemPriority class attribute.

[R57] IFF the value of this class attribute is TRUE, then the imple-

mentation MUST assign the priority of this OrderItem to the

value of the mcmIsOrderItemPriority class attribute.

setMCMIsOrderItem-

PriorityExpedited(in

This operation defines the value of the mcmOrderItemIsPriorityEx-
pedited class attribute. IFF the value of this Boolean is FALSE, then

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 82

isExpedited : Bool-

ean[1..1])

the mcmOrderItemPriority class attribute is irrelevant. Otherwise,
the priority of this OrderItem (if any) is defined by the value of the
mcmOrderItemPriority attribute. This operation takes a single in-
put parameter, called isExpedited, which is true if the MCMOrder-
Item should be expedited, and false otherwise. It is based on [15].

[R58] IFF the value of this class attribute is FALSE, then the im-

plementation MUST ignore the value of the mcmIsOrder-

ItemPriority class attribute.

[R59] IFF the value of this class attribute is TRUE, then the imple-

mentation MUST assign the priority of this OrderItem to the

value of the mcmIsOrderItemPriority class attribute.

getMCMOrderItemPri-

ority() : Integer[1..1]

This operation retrieves the value of the mcmOrderItemPriority
class attribute. This defines the relative priority of this OrderItem
compared to other OrderItems for this Order between this partic-
ular Buyer and Seller. This operation takes no input parameters,
and returns an Integer indicating the relative priority of this Order-
Item. It is based on [15].

[R60] IFF the value of the mcmIsOrderItemPriorityExpedited class

attribute is FALSE, then the implementation MUST ignore

the value of this class attribute.

[R61] IFF the value of the mcmIsOrderItemPriorityExpedited class

attribute is TRUE, then the implementation MUST assign the

priority of this OrderItem to the value of this class attribute. .

[O43] If two or more OrderItems have the same value of this attrib-

ute, then the implementation MAY process them in any or-

der, as long as each is processed in appropriate numerical or-

der of the mcmOrderPriority attribute value with respect to

all other Orders.

[R62] If an OrderItem does not have a value for this attribute, then

the implementation MUST process it (and any other similar

Orders) after all Orders that do have a valid value for this

attribute.

setMCMOrderItemPri-

ority (in newPriority :

Integer[1..1])

This operation defines the value of the mcmOrderItemPriority
class attribute. This defines the relative priority of this OrderItem
compared to other OrderItems for this Order between this partic-
ular Buyer and Seller. This operation takes a single input parame-
ter, called newPriority, which defines the relative priority of this
OrderItem compared to other OrderItems in the same Order. It is
based on [15].

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 83

[R63] IFF the value of the mcmIsOrderItemPriorityExpedited class

attribute is FALSE, then the implementation MUST ignore

the value of this class attribute.

[R64] IFF the value of the mcmIsOrderItemPriorityExpedited class

attribute is TRUE, then the implementation MUST assign the

priority of this OrderItem to the value of this class attribute.

[O44] If two or more OrderItems have the same value of this attrib-

ute, then the implementation MAY process them in any or-

der, as long as each is processed in appropriate numerical or-

der of the mcmOrderPriority attribute value with respect to

all other Orders.

[R65] If an OrderItem does not have a value for this attribute, then

the implementation MUST process it (and any other similar

Orders) after all Orders that do have a valid value for this

attribute.

getMCMOrder-

ItemType() : Order-

Type[1..1]

This operation retrieves the value of the mcmOrderItemType class
attribute. This defines the type of MCMOrderItem that this in-
stance is. This operation takes no input parameters, and returns a
value from the OrderType enumeration. It is based on [15].

setMCMOrderItemType

(in newType : Order-

Type[1..1])

This operation defines the value of the mcmOrderItemType class
attribute. This defines the type of MCMOrderItem that this in-
stance is. This operation takes a single input parameter, called
newType, which defines the type of OrderItem based on the val-
ues of the OrderType enumeration. It is based on [15].

getMCMOrderOfOrder-

Item() : MCMOrder-

Structure [1..1]

This operation retrieves the MCMOrderStructure that contains
this MCMOrderItem. This enables MCMOrderItems to query the
data of the MCMOrderStructure that contains them. This opera-
tion takes no input parameters.

[D89] If this MCMOrderItem has no containing MCMOrderStruc-

ture, then it SHOULD return a NULL MCMOrderStructure

object.

setMCMOrderOfOrder-

Item(in newContain-

ingOrder : MCMOrder-

Structure [1..1], in new-

Position : Integer[1..1])

This operation defines a new MCMOrder to contain this particular
MCMOrderItem. This operation takes two input parameters,
called newContainingOrder and newPosition. The first is an
MCMOrder object, and the second is the position that this
MCMOrderItem should occupy, if any (0 is a don’t care, while posi-
tive integers correspond to an increasing sequence of MCMOrder-
Items, starting with 1).

delMCMOrderItemOf-

Order()

This operation removes the aggregation, and its association class,
that enables this MCMOrderStructure to contain this MCMOrder-

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 84

Item. This is done by first, removing the association class, and sec-
ond, removing the aggregation, between this MCMOrderItem ob-
ject and this MCMOrderStructure object. This operation does NOT
affect the MCMOrderStructure object; it just deletes the aggrega-
tion between this MCMOrderStructure and this MCMOrderItem.
This operation has no input parameters.

Table 28. Operations of the MCMOrderItem Class

At this time, no relationships are defined for the MCMOrderItem class; it participates in the

MCMOrderStructureHasMCMOrderItem aggregation (see section 7.7.2).

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 85

7.8 MCMManagedEntity Class Hierarchy

The MCMManagedEntity class has five abstract subclasses, as shown in Figure 12.

Figure 12. ManagedEntity Subclasses

Table 29 defines the purpose of this hierarchy, and aligns them to MEF 55.1. The purpose of the

MCMManagedEntity hierarchy is to model the major different types of manageable entities that

are of interest to the managed environment. This hierarchy is based around the need to represent

and manage Products, Services, and Resources. As such, the MCMDefinition hierarchy is used to

specify common characteristics and behavior of these three concepts, and the MCMPolicyObject

hierarchy is used to manage these three concepts.

Name of Class Function Relation to MEF 55

MCMMan-

agedEntity

Represents objects that have the fol-

lowing common semantics: (1) each

has the potential to be managed; (2)

each can be associated with at least one

MCMManagementDomain; (3) each is

related to Products, Resources, and/or

Services of the system being managed.

The base class for defining

Products, Services, and Re-

sources that are defined and

used in MEF55.

MCMDefinition

The MCM equivalent of the ONF and

TMF “specification” classes. It defines

the salient characteristics, capabilities,

and constraints of concrete subclasses

of an MCMManagedEntity. When con-

crete subclasses of MCMDefinition are

instantiated, these characteristics, capa-

Critical to enabling scalable

and consistent creation of

Product, Service, and Re-

source hierarchies that share

common properties and be-

havior.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 86

bilities, and constraints will be invari-

ant over all instances of each concrete

subclass of MCMDefinition.

MCMPolicyObject

The root of the Policy Model. This pro-

vides a set of abstractions for viewing

any type of Policy, regardless of its

programming paradigm (e.g., impera-

tive, declarative, intent), as a set of

statements.

Realizes the Policy Driven

Orchestration information

model. Enables imperative,

declarative, and intent poli-

cies to be used in an MEF

LSO environment.

MCMProduct

Defines the set of goods and services,

offered to a market by an MCMParty

that is playing an appropriate

MCMPartyRole. MCMProducts are

purchased by an MCMCustomer,

which is a type of MCMPartyRole.

Each such purchased Product is based

on an MCMProductOffer, even if it

uses shared Resources and/or Services,

and results in a separate instance of the

MCMProduct class.

Models Products in an exten-

sible way.

MCMResource

Defines a set of capabilities that may

be consumed by other Resources

and/or Services. Resources are typi-

cally limited in quantity and/or availa-

bility. Resources may be logical or vir-

tual in nature. Note that physical re-

sources are NOT defined as a subclass

of Resource because a physical entity

is not inherently manageable. Rather,

physical resources are defined by the

PhysicalElement class, which is a sub-

class of UnManagedEntity.

Models Resources in an ex-

tensible way. This includes

legacy as well as NFV, SDN,

and other types of Resources.

MCMService

Represents functionality that can be

used by different internal and external

users (e.g., a management system and a

Customer, respectively) for different

purposes. Services may be used by

other Services, but not by Resources.

Models Services in an exten-

sible way.

Table 29. Functions of the MCMManagedEntity Class and its Subclasses

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 87

7.8.1 MCMManagedEntity Class Definition

This is an abstract class, and specializes MCMEntity. It represents objects that have the following

common semantics: (1) each has the potential to be managed; (2) each can be associated with at

least one ManagementDomain; (3) each can be related to Products, Resources, and/or Services of

the system being managed.

A common need of many operational and business support systems is to define an objectID that

meets their business needs. For example, a purchase order ID might be expected to have a partic-

ular structure. The MCM has therefore defined an attribute, called mcmExternalIDAttrName, to

provide this flexibility.

[R66] The mcmExternalIDAttrName attribute MUST be defined as a string, in order

to simplify the design and improve interoperability.

This enables operational and business support systems to name an attribute that can be used for all

MCMManagedEntity classes. This attribute is defined as a string, to enable different applications

to use this objectID in an interoperable manner.

[O45] MCMMetaData MAY be used to augment the meaning of these attributes by

attaching a set of MCMMetaData objects to an instance of the MCMMan-

agedEntity class (or any of its subclasses).

Table 30 defines the attributes of the MCMManagedEntity class.

Attribute Name Manda-
tory?

Description

mcmAdminState :
MCMAdmin-
State[1..1]

YES

This is a mandatory enumeration that defines the set of states
for what the IETF and ITU-T call "AdminStatus". Note that the
MCM extends both of these concepts. This attribute defines
the current ability of this MCMManagedEntity to communi-
cate with and respond to service requests from other
MCMManagedEntity objects. The values that this attribute can
have are defined by the MCMAdminState enumeration, and
include:
 ERROR
 INIT
 ENABLED_FOR_USE
 LOCKED
 IN_TEST
 UNKNOWN

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 88

mcmOperState :
MCMOperState[1..1]

YES

This is a mandatory enumeration that defines the set of states
for what the IETF and ITU-T call "OperStatus". Note that the
MCM version extends both of these concepts. This attribute
defines the current operational state of this MCMMan-
agedEntity. The values that this attribute can have are defined
by the MCMOperState enumeration, and include:
 ERROR
 INIT
 ENABLED_FOR_USE
 INSTALLED_AND_OPERATING_CORRECTLY
 INSTALLED_AND_NOT_OPERATING_CORRECTLY
 INSTALLED_BUT_NOT_OPERATING
 NOT_INSTALLED
 IN_TEST
 LOCKED
 UNKNOWN
INSTALLED_AND_NOT_OPERATING_CORRECTLY means that
the object installed but has one or more pending alarms that
have not been cleared.
INSTALLED_BUT_NOT_OPERATING means that the object is in
a shutdown, powered-off, or similar state.
IN_TEST means that the object can only respond to testing
commands and communications
LOCKED means that the object is prohibited from being used
UNKNOWN means that this object was unable to report its
status when communication was last attempted

mcmMgdEntityCre-
ationDate : Time-
AndDate[1..1]

YES

This is a TimeAndDate attribute. It defines the date and time
that this MCMManagedEntity object instance was created.

[D90] This attribute SHOULD have a complete and valid

time and/or date.

[O46] The implementation MAY ensure that the fields in

this data type are set to an appropriate default value.

mcmExternalID-
AttrName :
String[0..1]

NO

The mcmExternalIDAppName attribute is a string, and
defines the name of an objectID that an external Applica-
tion is using.

[R67] This attribute MUST NOT be used as a naming at-

tribute (i.e., to uniquely identify an instance of the

object).

[D91] If an object does not have a value for this class at-

tribute, then an empty string SHOULD be used.

Table 30. Attributes of the MCMManagedEntity Class

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 89

Table 31 defines the operations for this class:

Operation Name Description

getMCMAdminState() :

MCMAdminState[1..1]

This operation returns the value of the mcmAdminState attribute.
There are no input parameters to this operation. The value re-
turned is one of the values defined in the MCMAdminState enu-
meration.

setMCMAdminState (in

newAdminState :

MCMAdminState[1..1])

This operation defines the new value for the mcmAdminState at-
tribute. There is a single input parameter, called newAdminState
(of data type MCMAdminState) that contains a set of valid values
to be used.

getMCMOperState() :

MCMOperState[1..1]

This operation returns the value of the mcmOperState attribute.
There are no input parameters to this operation. The value re-
turned is one of the values defined in the MCMOperState enumer-
ation.

setMCMOperState(in

newOperState :

MCMOperState[1..1])

This operation defines the new value for the mcmOperState attrib-
ute. There is a single input parameter, called newOperState (of
data type MCMOperState) that contains a set of valid values to be
used.

getMCMMgdEntityCre-

ationDate() : Time-

AndDate[1..1]

This operation returns the value of the mcmMgdEntityCrea-
tionDate attribute. There are no input parameters to this opera-
tion. The value returned is a TimeAndDate attribute.

[D92] This attribute SHOULD have a complete and valid time

and/or date.

[O47] The implementation MAY ensure that the fields in this data

type are set to an appropriate default value.

setMCMMgdEntityCre-

ationDate(in newTime-

AndDate : Time-

AndDate [1..1])

This operation defines a new value for the mcmMgdEntityCrea-
tionDate attribute. There is a single input parameter, called new-
TimeAndDate (of data type TimeAndDate) that contains a set of
valid values to be used.

getMCMExternalID-

AttrName () :

String[1..1]

This operation retrieves the value of the mcmExternalIDAttrName
attribute, which is a string that contains the name of the Exter-
nalID attribute that is being defined for use in the MCM.

[R68] This class attribute MUST NOT be used as a naming attrib-

ute (i.e., to uniquely identify an instance of the object).

[D93] If an object does not have a value for this class attribute, then

an empty string SHOULD be used.

setMCMExternalID-

AttrName (in newAttr-

Name : String[1..1])

This operation defines a new value for the ExternalIDAttrName at-
tribute. There is a single input parameter, called newAttrName (of

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 90

data type String) that defines the new name of the mcmExternal-
IDAttrName attribute.

[R69] This class attribute MUST NOT be used as a naming attrib-

ute (i.e., to uniquely identify an instance of the object).

[O48] If an object does not have a value for this class attribute, then

an empty string SHOULD be used.

getMCMParent-

Domain() : MCMMan-

agementDomain[1..1])

This operation retrieves the MCMManagementDomain that con-
tains this MCMManagedEntity. This operation takes no input pa-
rameters.

[D94] If this MCMManagedEntity has no containing MCMMan-

agementDomain, then it SHOULD return a NULL

MCMManagementDomain object.

setMCMParentDomain

(in newMgmtDomain :

MCMManagement-

Domain[1..1])

This operation defines a new MCMManagementDomain to contain
this particular MCMManagedEntity. This operation takes a single
input parameter, called newMgmtDomain, which is an MCMMan-
agementDomain object.
If this MCMManagedEntity object already has a parent MCMMan-
agementDomain, then this MCMManagementDomain will be de-
leted by first, deleting the accompanying association class, and
second, deleting the corresponding aggregation. Then, a new ag-
gregation (an instance of MCMMgmtDomainHasMCMMgdEntity)
is created; following that, a new association class is then created
to realize the semantics of the aggregation.

delMCMParent-

Domain()

This operation removes the aggregation, and its association class,
that enables this MCMManagedEntity to be contained by this
MCMManagementDomain. This operation does NOT affect either
the MCMManagementDomain object or the MCMManagedEntity
object; it just deletes the aggregation between this MCMManage-
mentDomain object and this MCMManagedEntity. This operation
has no input parameters.

getReferredMCMUn-

ManagedEntityList() :

MCMUnMan-

agedEntity[1..*]

This operation retrieves the set of MCMUnManagedEntity objects
that refer to this MCMManagedEntity object. This operation takes
no input parameters.

[D95] If this MCMManagedEntity object has no MCMUnMan-

agedEntity object that it refers to, then it SHOULD return a

NULL MCMUnManagedEntity object.

setReferredMCMUn-

ManagedEntityList(in

newUnMgdEntityList :

MCMUnMan-

agedEntity[1..*])

This operation defines a new set of MCMUnManagedEntity ob-
jects that refer to this particular MCMManagedEntity object. This
operation takes a single input parameter, called newUn-
MgdEntityList, which defines a set of one or more MCMUnMan-
agedEntity objects. If this MCMManagedEntity object already has
a set of one or more MCMUnManagedEntity objects that it refers

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 91

to, then those MCMUnManagedEntity objects will be deleted by
first, deleting the accompanying association class, and second, de-
leting the corresponding association. Then, a new association (an
instance of MCMMgdEntityRefersToMCMUnManagedEntity) is
created for each UnManagedEntity object in the newUn-
MgdEntityList.

[D96] Every association created SHOULD have a new association

class created to realize the semantics of that association.

setReferredMCMUn-

ManagedEntityPartial-

List(in newUn-

MgdEntityList :

MCMUnMan-

agedEntity[1..*])

This operation defines a new set of MCMUnManagedEntity ob-
jects that refer to this particular MCMManagedEntity object. This
operation takes a single input parameter, called newUn-
MgdEntityList, which defines a set of one or more MCMUnMan-
agedEntity objects. If this MCMManagedEntity object already has
a set of one or more MCMUnManagedEntity objects that it refers
to, then those MCMUnManagedEntity objects are ignored. Then, a
new association (an instance of MCMMgdEntityRefersToMCMUn-
ManagedEntity) is created for each UnManagedEntity object in the
newUnMgdEntityList.

[D97] Every association created SHOULD have a new association

class created to realize the semantics of that association.

delReferredMCMUn-

ManagedEntity()

This operation removes the association, and its association class,
that enables this MCMManagedEntity object to refer to any
MCMUnManagedEntity objects. This operation does NOT affect ei-
ther the MCMUnManagedEntity object or the MCMMan-
agedEntity object; it just deletes the association between this
MCMManagedEntity object and this MCMUnManagedEntity ob-
ject. This operation has no input parameters.

delReferredMCMUn-

ManagedEntityPar-

tial(in unMgdEntityList

: MCMUnMan-

agedEntity[1..1])

This operation removes the association, and its association class,
for each MCMUnManagedEntity object in the unMgdEntityList
that is associated with this particular MCMManagedEntity. Any as-
sociation between this MCMManagedEntity object and other
MCMUnManagedEntity objects that are not specified in the un-
MgdEntityList are NOT affected. This operation does NOT affect ei-
ther the MCMUnManagedEntity object or the MCMMan-
agedEntity object; it just deletes the association between this
MCMManagedEntity object and this MCMUnManagedEntity ob-
ject. This operation has no input parameters.

Table 31. Operations of the MCMManagedEntity Class

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 92

At this time, the MCMManagedEntity class defines a single association, called MCMMgdEnti-

tyRefersToMCMUnMgdEntity. This association enables an MCMManagedEntity to refer to a set

of MCMUnManagedEntities, and vice versa. The multiplicity of this relationship is 0..1 – 0..*.

This means that this association is optional (i.e., the “0” part of the 0..1 cardinality). If this associ-

ation is instantiated (e.g., the “1” part of the 0..1 cardinality), then zero or more MCMUnMan-

agedEntity objects can be associated with this particular MCMManagedEntity object. Note that

the cardinality on the part side (MCMUnManagedEntity) is 0..*; this enables an MCMMan-

agedEntity object to be defined without having to define an associated MCMUnManagedEntity

object for it. For example, an MCMService could be associated with the location of an MCMPhys-

icalEntity at a particular MCMLocation.

The semantics of this association are defined by the MCMMgdEntityRefersToMCMUnMgdEnti-

tyDetail association class. This enables the semantics of the association to be defined using the

attributes and behavior of this association class. For example, it can be used to define which

MCMUnManagedEntity objects are allowed to be associated with which MCMManagedEntity

objects (or vice-versa).

The Policy Pattern (see Figure 3) may be used to define policy rules that constrain which objects

of one type are related to which objects of the other type (e.g., which MCMUnManagedEntity

objects are related to which MCMManagedEntity objects). Note that MCMPolicyStructure is an

abstract class that is the superclass of imperative, declarative, and intent policy rules.

The MCMManagedEntity class also participates in two aggregations, called MCMMgmtDomain-

HasMCMMgdEntity and MCMCatalogItemContainsMCMManagedEntity. These two aggrega-

tions are defined in sections 7.6 and 7.8.6.9, respectively.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 93

7.8.2 MCMDefinition Class Hierarchy

The MCMDefinition class hierarchy is shown in Figure 13.

Figure 13. MCMDefinition Class Hierarchy

7.8.2.1 MCMDefinition Class Definition

This is an abstract class, and specializes MCMManagedEntity. It provides the salient characteris-

tics, capabilities, and constraints of concrete subclasses of an MCMManagedEntity. Hence, it can

be thought of as a template that define common characteristics and behavior of instantiated objects

of this class. When concrete subclasses of MCMDefinition are instantiated, these characteristics,

capabilities, and constraints will be invariant over all instances of each concrete subclass of

MCMDefinition.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 94

At this time, no attributes are defined for the MCMDefinition class.

At this time, no operations are defined for the MCMDefinition class.

At this time, no relationships are defined for the MCMDefinition class.

7.8.2.2 MCMDefinitionDecorator Class Definition

This is an abstract class, and specializes MCMDefinition. It defines the decorator pattern applied

to an MCMDefinitionDecorator, which enables all or part (e.g., a subset of the attributes of a class)

of one or more concrete subclasses of MCMFeature to “wrap” another concrete subclass of

MCMDefinitionDecorator (e.g., a subclass of MCMFeature or MCMBusinessTerm).

At this time, no attributes are defined for the MCMDefinitionDecorator class.

At this time, no relationships are defined for the MCMDefinitionDecorator class. It participates in

two aggregations, called MCMFeatureDecoratesMCMDefinition (see section 7.8.2.4) and

MCMOfferHasMCMDefinitionDecorator (see section 7.8.2.8).

7.8.2.3 MCMBusinessTerm Class Definition

This is a concrete class, and specializes MCMDefinitionDecorator. It defines the set of business

terms that dictate how a particular type of MCMOffer (i.e., a business offering, typically based on

demographics,) is sold to Customers. An MCMOffer aggregates one or more MCMFeatures,

MCMBusinessTerms, and other business logic; please see section 7.8.2.8 for the definition of an

MCMOffer.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 95

Table 32 defines the attributes of the MCMBusinessTerm class.

Attribute Name Manda-
tory?

Description

mcmBusTerm-
RMM : String[0..1]

NO This is a string attribute. It consists of free-form text that de-
scribes the remote monitoring and management (RMM) capa-
bilities included in this MCMOffer. RMM solutions enable
many mundane, time-consuming activities to be scripted and
delivered on a scheduled basis without human intervention
(e.g., operating system and software application patch man-
agement, antivirus and antispam updates, disk optimization
and backup).

mcmBusTerm-
ServiceDesk :
String[0..1]

NO This is a string attribute. It defines the type of problem man-
agement and remediation services that are available to
MCMCustomers that purchase this MCMOffer. The service
desk functions as the single point of contact for all end-user is-
sues.

mcmBusTermVen-
dorMgmt :
String[0..1]

NO This is a string attribute. It defines the type of vendor manage-
ment that is included for Buyers that purchase an MCMOffer
that has this MCMBusinessTerm. Vendor management of-
floads all interactions with the vendors from the customer.
This service adds tremendous value to the relationship be-
tween the MCMCustomer and the MCMServiceProvider, as
the MCMCustomer need only open a service request for any
issue affecting their MCMProduct purchase.

Table 32. Attributes of the MCMBusinessTerm Class

Table 33 defines the operations for this class:

Operation Name Description

getMCMBusTerm-

RMM() :

MCMString[1..1]

This operation returns the value of the mcmBusTermRMM attrib-
ute. There are no input parameters to this operation. The value
returned is a string attribute that describes the remote monitor-
ing and management capabilities of this MCMBusinessTerm.

[D98] If the mcmBusTermRMM attribute is empty, then an empty

string SHOULD be returned.

setMCMBusTermRMM

(in newString :

String[1..1])

This operation defines a new value for the mcmBusTermRMM at-
tribute. There is a single input parameter, called newString (of
data type String) that contains the text that describes the remote
monitoring and management capabilities of this MCMBusi-
nessTerm.

http://searchsecuritychannel.techtarget.com/guides/Project-Guides
http://searchsecuritychannel.techtarget.com/guides/Project-Guides
http://searchsecuritychannel.techtarget.com/guides/Project-Guides

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 96

[O49] The newString attribute MAY contain an empty string (e.g.,

for clearing this field).

getMCMBusTerm-

ServiceDesk() :

String[1..1]

This operation returns the value of the mcmBusTermServiceDesk
attribute. There are no input parameters to this operation. The
value returned is a string attribute that describes the problem
management and remediation services of this MCMBusi-
nessTerm.

[D99] If the mcmBusTermRMM attribute is empty, then an empty

string SHOULD be returned.

setMCMBusTerm-

ServiceDesk (in new-

String : String[1..1])

This operation defines the new value for the mcmBusTerm-
ServiceDesk attribute. There is a single input parameter, called
newString (of data type String) that contains a description of the
problem management and remediation services of this MCMBusi-
nessTerm.

[O50] The newString attribute MAY contain an empty string (e.g.,

for clearing this field).

getMCMBusTermVen-

dorMgmt() : String[1..1]

This operation returns the value of the mcmBusTermVen-
dorMgmt attribute. There are no input parameters to this opera-
tion. The value returned is a String that describes the type of ven-
dor management that is included for Buyers that purchase an
MCMOffer that has this MCMBusinessTerm.

[D100] If the mcmBusTermVendorMgmt attribute is empty, then

an empty string SHOULD be returned.

setMCMBusTermVen-

dorMgmt (in newString :

String[1..1])

This operation defines a new value for the mcmBusTermVen-
dorMgmt attribute. There is a single input parameter, called new-
String (of data type String) that contains a description of the type
of vendor management that is included for Buyers that purchase
an MCMOffer that has this MCMBusinessTerm.

[O51] The newString attribute MAY contain an empty string (e.g.,

for clearing this field).

getMCMFeatureList() :

MCMFeature[1..*]

This operation returns the set of MCMFeature objects that cur-
rently decorate this MCMBusinessTerm object. The return value
is an array of one or more objects of type MCMFeature.

[D101] If this MCMBusinessTerm object is not decorated by any

MCMFeature objects, then a NULL MCMFeature object

SHOULD be returned.

setMCMFeatureList(in

newFeatureList :

MCMFeature[1..*])

This operation defines the set of MCMFeatures that will decorate
this MCMBusinessTerm object. This method takes a single input
parameter, called newFeatureList, which is an array of MCMFea-
ture objects. This operation decorates this particular MCMBusi-
nessTerm object with the set of MCMFeature objects identified in

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 97

the input parameter. Note that this operation first deletes any ex-
isting MCMFeature objects that decorate the MCMBusinessTerm
object, and then instantiates a new set of MCMFeature objects to
decorate this particular MCMBusinessTerm object.

[O52] Implementations MAY realize the decorator pattern in any

way they wish, so long as the Decorator forwards requests

to the object that it is wrapping.

[O53] A decorator object MAY perform additional actions before

and/or after forwarding requests to the object that it is wrap-

ping.

setMCMFeaturePartial-

List(in newFeaturePar-

tialList : MCMFea-

ture[1..*])

This operation defines the set of MCMFeatures that will decorate
this MCMBusinessTerm object WITHOUT affecting any other dec-
orated objects on this MCMBusinessTerm object. This method
takes a single input parameter, called newFeaturePartialList,
which is an array of MCMFeature objects. This operation deco-
rates this particular MCMBusinessTerm object with the set of
MCMFeature objects identified in the input parameter. No other
model elements of this MCMBusinessTerm object are affected.

[O54] Implementations MAY realize the decorator pattern in any

way they wish, so long as the Decorator forwards requests

to the object that it is wrapping.

[O55] A decorator object MAY perform additional actions before

and/or after forwarding requests to the object that it is wrap-

ping.

delMCMFeatureList()

This operation removes ALL instances of MCMFeature objects
that were decorating this particular MCMBusinessTerm object.

[O56] Implementations MAY remove the decorating object any

way they wish, including deleting the object.

delMCMFeaturePartial-

List(in newFeaturePar-

tialList : MCMFea-

ture[1..*])

This operation removes the set of MCMFeature objects identified
in the input parameter that were decorating this MCMBusi-
nessTerm object WITHOUT affecting any other decorated objects
on this MCMBusinessTerm object. This operation takes a single
input parameter, called newFeaturePartialList, which is an array
of one or more MCMFeature objects.

[O57] Implementations MAY remove the decorating object any

way they wish, including deleting the object.

Table 33. Operations of the MCMBusinessTerm Class

At this time, no relationships are defined for the MCMBusinessTerm class.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 98

7.8.2.4 MCMFeature Class Description

This is an abstract class, and specializes MCMDefinitionDecorator. It defines the characteristics

or behavior of a set of functions that are contained in an MCMOffer.

Conceptually, an MCMFeature is a salient type of characteristic or behavior of an object that it

describes. An MCMFeature may be related to one or more MCMCapability objects (see section

7.11.6.1) via the MCMEntityHasMCMMetaData aggregation (see section 7.4). This enables a list

of used and unused capabilities to augment the definition of each MCMFeature object.

MCMFeature is the superclass for three subclasses – MCMProductFeature, MCMServiceFeature,

and MCMResourceFeature. This enables features that are part of the templates that define

MCMProduct, MCMService, and MCMResource, respectively, to be used to construct a business

offering (a subclass of MCMOffer). MCMFeatures play an important role in constructing

MCMOffers; please see section 7.8.2.4.

At this time, no attributes are defined for the MCMFeature class.

At this time, no operations are defined for the MCMFeature class.

At this time, a single aggregation is defined for the MCMFeature class. This aggregation is named

MCMFeatureDecoratesMCMDefinition, and defines the set of MCMFeatures that wrap (or deco-

rate) this particular MCMDefinition object. The multiplicity of this aggregation is 0..1 – 0..*. This

means that this aggregation is optional (i.e., the “0” part of the 0..1 cardinality). If this aggregation

is instantiated (e.g., the “1” part of the 0..1 cardinality), then zero or more MCMFeature objects

can wrap this particular MCMDefinitionDecorator object. The 0..* cardinality enables an

MCMFeature object to be defined without having to define an associated MCMDefinitionDecora-

tor object for it to aggregate. The semantics of this aggregation are defined by the MCMFea-

tureDecoratesMCMDefinitionDetail association class. This enables the management system to

control which set of concrete subclasses of MCMFeature (e.g., a subclass of MCMFeature) are

used to wrap a concrete subclass of MCMDefinitionDecorator (e.g., an MCMBusinessTerm).

The Policy Pattern may be used to control which specific MCMFeature objects are used to wrap a

given MCMDefinition object for a given context. See Figure 3 for an exemplary illustration of the

Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of imper-

ative, declarative, and intent policy rules.

7.8.2.5 MCMProductFeature Class Definition

This is a concrete class, and specializes MCMFeature. It defines a set of the salient characteristics

and behavior used to construct an MCMProductOffer for sale to a market. The characteristics and

behavior of this class are application-specific, so in this definition of the MCM, the purpose of this

class is solely to define the concept for different applications using the MCM to be able to create

a common subclass for interoperability.

At this time, no attributes are defined for the MCMProductFeature class.

At this time, no operations are defined for the MCMProductFeature class.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 99

At this time, no relationships are defined for the MCMProductFeature class.

7.8.2.6 MCMService Feature Class Definition

This is a concrete class, and specializes MCMFeature. It defines a set of the salient characteristics

and behavior used to construct an MCMProductOffer or an MCMServiceOffer for use by an in-

ternal or external consumer. The characteristics and behavior of this class are application-specific,

so in this definition of the MCM, the purpose of this class is solely to define the concept for dif-

ferent applications using the MCM to be able to create a common subclass for interoperability.

At this time, no attributes are defined for the MCMServiceFeature class.

At this time, no operations are defined for the MCMServiceFeature class.

At this time, no relationships are defined for the MCMServiceFeature class.

7.8.2.7 MCMResourceFeature Class Definition

This is a concrete class, and specializes MCMFeature. It defines a set of the salient characteristics

and behavior used to construct an MCMProductOffer, MCMServiceOffer, or MCMResourceOffer

for use by an internal or external consumer. The characteristics and behavior of this class are ap-

plication-specific, so in this definition of the MCM, the purpose of this class is solely to define the

concept for different applications using the MCM to be able to create a common subclass for in-

teroperability.

At this time, no attributes are defined for the MCMResourceFeature class.

At this time, no operations are defined for the MCMResourceFeature class.

At this time, no relationships are defined for the MCMResourceFeature class.

7.8.2.8 MCMOffer Class Definition

This is an abstract class, and specializes MCMDefinition. It defines a business offering, typically

based on demographics, to interact with internal or external Customers. An Offer aggregates one

or more MCMFeatures, MCMBusinessTerms, and other business logic.

It is the superclass for three subclasses – MCMProductOffer, MCMServiceOffer, and MCMRe-

sourceOffer. This enables features from MCMProduct, MCMService, and MCMResource, respec-

tively, to be used to construct a business offering (a subclass of MCMOffer).

The structure of MCMOffer parallels that of MCMFeature; this markedly simplifies usability of

both. Note that the MCMOfferHasMCMDefinitionDecorator aggregation is part of a pattern that

enables MCMOffers to be made up of a combination of different MCMFeatures and MCMBusi-

nessTerms. Since both MCMFeature and MCMBusinessTerm are subclasses of MCMDefini-

tionDecorator, both can be added dynamically at runtime to an MCMOffer. This addresses the use

case of changing an order in flight without having to recompile and redeploy.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 100

At this time, no attributes are defined for the MCMOffer class. Note that concepts such as a time

period that defines the starting and ending time that this MCMOffer is valid for are realized as

associated MCMMetadata objects.

Table 34 defines the operations for this class:

Operation Name Description

getMCMBusinessTerm-

List() : MCMBusi-

nessTerm[1..*]

This operation returns the set of MCMBusinessTerm objects
that are currently contained by this MCMOffer object. The re-
turn value is an array of one or more objects of type
MCMBusinessTerm. This operation follows all instances of the
MCMOfferHasMCMDefinitionDecorator aggregation (i.e.,
from this MCMOffer object to each MCMBusinessTerm object
that it contains), and returns the aggregated MCMBusi-
nessTerm objects as an array. This operation does not return
any MCMFeature objects that are decorating the set of
MCMBusinessTerm objects; if that is desired, use the
getMCMFeature operation for each MCMBusinessTerm object
that is returned.

[D102] If this object does not contain any MCMBusinessTerm

objects, then a NULL MCMBusinessTerm object

SHOULD be returned.

setMCMBusinessTermList(

in newBusinessTermList :

MCMBusinessTerm [1..*])

This operation defines the complete set of MCMBusinessTerm
objects that will be aggregated by this MCMOffer object. This
operation takes a single input parameter, called newBusi-
nessTermList, which is an array of one or more MCMBusi-
nessTerm objects; this represents the new MCMBusinessTerm
objects that will be aggregated by this MCMOffer object.
Any existing MCMBusinessTerm objects that are aggregated
by this MCMOffer object are first deleted. This is done by de-
leting each instance of the MCMOfferHasMCMDefinitionDec-
orator aggregation (and its association class), which discon-
nects the MCMBusinessTerm object from this MCMOffer ob-
ject. Note that the MCMBusinessTerm object, and any deco-
rating MCMFeature objects, are NOT deleted. This operation
then creates a set of aggregations (i.e., an instance of
MCMOfferHasMCMDefinitionDecorator) between this partic-
ular MCMOffer object and the set of MCMBusinessTerm ob-
jects identified in the input parameter. However, this opera-
tion does not create any decorating MCMFeature objects for
a given MCMBusinessTerm object.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 101

[D103] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMOffer-

HasMCMDefinitionDecoratorDetail class).

setMCMBusinessTermPar-

tialList (in newBusi-

nessTermPartialList:

MCMBusinessTerm [1..*])

This operation defines a set of one or more MCMBusi-
nessTerm objects that will be aggregated by this particular
MCMOffer object WITHOUT affecting any other existing
MCMBusinessTerm objects or the objects that are decorating
them. This operation takes a single input parameter, called
newBusinessTermItemPartialList, which is an array of one or
more MCMBusinessTerm objects. This operation creates a set
of aggregations (i.e., an instance of MCMOfferHasMCMDefini-
tionDecorator) between this particular MCMOffer object and
the set of MCMBusinessTerm objects identified in the input
parameter. This operation does not create any decorating
MCMFeature objects for a given MCMBusinessTerm object.

[D104] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMOffer-

HasMCMDefinitionDecoratorDetail class).

delMCMBusinessTerm-

List()

This operation disconnects ALL instances of contained
MCMBusinessTerm objects for this particular MCMOffer ob-
ject. This operation first removes the association class, and
second, removes the aggregation, between this MCMOffer
object and each MCMBusinessTerm object that is attached to
this MCMOffer object. This operation does not affect either
the MCMBusinessTerm object, or any MCMFeature objects
that are decorating each MCMBusinessTerm object.

delMCMBusinessTermPar-

tialList (in newBusi-

nessTermPartialList:

MCMBusinessTerm[1..*])

This operation disconnects a set of MCMBusinessTerm objects
from being contained by this particular MCMOffer object. This
operation takes a single input parameter, called newBusi-
nessTermPartialList, which is an array of one or more
MCMBusinessTerm objects. This operation first, removes the
association class and second, removes the aggregation, be-
tween each MCMBusinessTerm object specified in the input
parameter and this MCMOffer object. This operation does not
affect either the MCMBusinessTerm object, or any MCMFea-
ture objects that are decorating each MCMBusinessTerm ob-
ject, specified in the input parameter. In other words, this op-
eration disconnects each MCMBusinessTerm (and any
MCMFeature objects that are decorating it) that is specified in
the input parameter from this MCMOffer object.

Table 34. Operations of the MCMOffer Class

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 102

At this time, a single aggregation is defined for the MCMOffer class. This aggregation is named

MCMOfferHasMCMDefinitionDecorator, and defines the set of MCMDefinitionDecorators that

are contained by this particular MCMOffer object. The multiplicity of this aggregation is 0..1 –

0..*. This means that this aggregation is optional (i.e., the “0” part of the 0..1 cardinality). If this

aggregation is instantiated (e.g., the “1” part of the 0..1 cardinality), then zero or more MCMDef-

initionDecorator objects can be aggregated by this particular MCMOffer object. Note that the car-

dinality on the part side (MCMDefinitionDecorator) is 0..*; this enables an MCMOffer object to

be defined without having to define an associated MCMDefinitionDecorator object for it to aggre-

gate. The semantics of this aggregation are defined by the MCMOfferHasMCMDefinitionDeco-

ratorDetail association class. This enables the management system to control which set of concrete

subclasses of MCMDefinitionDecorator (e.g., a concrete subclass of MCMFeature) are contained

by this particular (concrete subclass of) MCMOffer.

The Policy Pattern may be used to control which specific concrete subclasses of MCMDefini-

tionDecorator are used to wrap a given concrete subclass of MCMOffer for a given context. See

Figure 3 for an exemplary illustration of the Policy Pattern. Note that MCMPolicyStructure is an

abstract class that is the superclass of imperative, declarative, and intent policy rules.

7.8.2.9 MCMProductOffer Class Definition

This is a concrete class, and specializes MCMOffer. It defines a business offering, typically based

on demographics, to sell MCMProducts to MCMCustomers. It consists of a set of features (defined

by one or more MCMProductFeatures, MCMServiceFeatures, and MCMResourceFeatures),

MCMBusinessTerms, and other functionality that make up an MCMProduct.

Table 35 defines the attributes for the MCMProductOffer class.

Attribute Name Manda-
tory?

Description

mcmProductOf-
ferType :
MCMProductOr-
derType[1..1]

YES This is a mandatory enumeration that defines the type of
MCMProduct that this instance is. Valid values are de-
fined by the MCMProductOrderType enumeration. Note
that only one MCMProduct can be ordered in a single or-
der request. Values include:
 0: ERROR
 1: INIT
 2: UniProduct
 3: AccessELineProduct

Table 35. Attributes of the MCMProductOffer Class

Table 36 defines the operations for this class:

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 103

Operation Name Description

getMCMProductOffer-

Type() : MCMProductOr-

derType[1..1]

This operation returns the type of MCMProduct that this in-
stance is. There are no input parameters to this operation.
Valid values are defined by the MCMProductOrderType enu-
meration.

setMCMProductOrder-

Type(in newMCMProduct:

MCMProductOrder-

Type[1..1])

This operation defines the type of MCMProduct that this in-
stance is. There is a single input parameter, called new-
MCMProduct, which is of type MCMProductOrderType. Valid
values are defined by the MCMProductOrderType enumera-
tion.

Table 36. Operations of the MCMProductOffer Class

At this time, a single aggregation is defined for MCMProductOffer. This is shown in Figure 14.

The MCMProductDefinedByMCMProductOffer aggregation specifies the set of MCMProducts

whose characteristics and behavior are defined by this set of MCMProductOffers. The multiplicity

of this aggregation is 0..1 – 0..*. This means that this aggregation is optional (i.e., the “0” part of

the 0..1 cardinality). If this aggregation is instantiated (e.g., the “1” part of the 0..1 cardinality),

then zero or more MCMProduct objects can be aggregated by this particular MCMProductOffer

object. Note that the cardinality on the part side (MCMProduct) is 0..*; this enables an

MCMProductOffer object to be defined without having to define an associated MCMProduct ob-

ject for it to aggregate. For example, different MCMProductOffers could be used to specify the

Figure 14. The MCMProductDefinedByMCMProductOffer Aggregation

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 104

customer premise equipment, connectivity services, and application guarantees of a bundled

MCMProduct offering.

The semantics of this aggregation are defined by the MCMProductDefinedByMCMProductOffer-

Detail association class. This enables the management system to control which set of concrete

subclasses of MCMProduct are defined by this particular MCMProductOffer class. The Policy

Pattern may be used to control which specific MCMProduct objects are affected by which

MCMProductOffer objects for a given context. See Figure 3 for an exemplary illustration of the

Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of imper-

ative, declarative, and intent policy rules.

7.8.2.10 MCMServiceOffer Class Definition

This is a concrete class, and specializes MCMOffer. It defines a business offering, typically based

on demographics, to provide Services to Consumers. It defines the characteristics and behavior of

Services that are invariant across all MCMOrderedService and MCMInternalService instances.

Users of these Services can be internal or external Applications, Services, other Resources, Par-

tyRoles, and other appropriate Entities. The characteristics and behavior of this class are applica-

tion-specific, so in this definition of the MCM, the purpose of this class is solely to define the

concept for different applications using the MCM to be able to create a common subclass for in-

teroperability.

At this time, no attributes are defined for the MCMServiceOffer class.

At this time, no operations are defined for the MCMServiceOffer class.

At this time, a single aggregation is defined for MCMServiceOffer. This is shown in Figure 15.

Figure 15. The MCMServiceDefinedByMCMService Offer Aggregation

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 105

The MCMServiceDefinedByMCMServiceOffer aggregation specifies the set of MCMServices

whose characteristics and behavior are defined by this set of MCMServiceOffers. The multiplicity

of this aggregation is 0..1 – 0..*. This means that this aggregation is optional (i.e., the “0” part of

the 0..1 cardinality). If this aggregation is instantiated (e.g., the “1” part of the 0..1 cardinality),

then zero or more MCMService objects can be aggregated by this particular MCMServiceOffer

object. Note that the cardinality on the part side (MCMService) is 0..*; this enables an

MCMServiceOffer object to be defined without having to define an associated MCMService ob-

ject for it to aggregate. For example, different MCMServiceOffers could be used to specify differ-

ent application performance, response, and other behavior of an MCMService.

The semantics of this aggregation are defined by the MCMServiceDefinedByMCMServiceOffer-

Detail association class. This enables the management system to control which set of concrete

subclasses of MCMService are defined by this particular MCMServiceOffer class. The Policy Pat-

tern may be used to control which specific MCMService objects are affected by which

MCMServiceOffer objects for a given context. See Figure 3 for an exemplary illustration of the

Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of imper-

ative, declarative, and intent policy rules.

7.8.2.11 MCMResourceOffer Class Definition

This is a concrete class, and specializes MCMOffer. It defines a business offering, typically based

on demographics, to provide Resources to internal or external Applications, Services, other Re-

sources, PartyRoles, and other appropriate Entities. It defines the characteristics and behavior of

Resources that are invariant across all concrete subclasses of Resource. The characteristics and

behavior of this class are application-specific, so in this definition of the MCM, the purpose of this

class is solely to define the concept for different applications using the MCM to be able to create

a common subclass for interoperability.

At this time, no attributes are defined for the MCMResourceOffer class.

At this time, no operations are defined for the MCMResourceOffer class.

At this time, a single aggregation is defined for MCMResourceOffer. This is shown in Figure 16.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 106

The MCMResouceDefinedByMCMResourceOffer aggregation specifies the set of MCMRe-

sources whose characteristics and behavior are defined by this set of MCMResourceOffers. The

multiplicity of this aggregation is 0..1 – 0..*. This means that this aggregation is optional (i.e., the

“0” part of the 0..1 cardinality). If this aggregation is instantiated (e.g., the “1” part of the 0..1

cardinality), then zero or more MCMResource objects can be aggregated by this particular

MCMResourceOffer object. Note that the cardinality on the part side (MCMResource) is 0..*; this

enables an MCMResourceOffer object to be defined without having to define an associated

MCMResource object for it to aggregateFor example, different MCMResourceOffers could be

used to define the storage, computing power, and connectivity required by a given MCMService.

The semantics of this aggregation are defined by the MCMResourceDefinedByMCMRe-

sourceOfferDetail association class. This enables the management system to control which set of

concrete subclasses of MCMResource objects are defined by this particular MCMResourceOffer

object. The Policy Pattern may be used to control which specific MCMResource objects are af-

fected by which MCMResourceOffer objects for a given context. See Figure 3 for an exemplary

illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the

superclass of imperative, declarative, and intent policy rules.

Figure 16. The MCMResourceDefinedByMCMResourceOffer Aggregation

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 107

7.8.3 MCMPolicyObject Class Definition

This is an abstract class, and specializes MCMManagedEntity. It is the root of the MCM Policy

system (i.e., all other classes in the model are subclasses of this class) except for any Metadata

objects associated with a Policy object (these are defined in the MCMMetaData class hierarchy).

This simplifies code generation and reusability. It also enables different types of MCMMetadata

objects to be attached to any appropriate subclass of MCMPolicyObject.

An MCMPolicyObject may be qualified by a set of zero or more MCMMetadata objects. Two

different aggregations are defined for this purpose. The MCMPolicyObjectHasMCMMetaData

aggregation is used to relate generic metadata (e.g., version and best current practice information)

to an MCMPolicyObject. In contrast, the MCMPolicyObjectHasMCMPolicyMetaData aggrega-

tion enables different types of policy-specific metadata to be associated with an MCMPolicyOb-

ject.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 108

7.8.4 MCMProduct Class Hierarchy

The MCMProduct class hierarchy is shown in Figure 17.

7.8.4.1 MCMProduct Class Definition

This is an abstract class, and specializes MCMManagedEntity. This defines the set of goods and

services, offered to a market, by a set of MCMParties, which is playing a set of appropriate

MCMPartyRoles. MCMProducts are purchased by an MCMCustomer, which is a specific type of

MCMPartyRole.

Each such Product is based on an MCMProductOffer, even if it uses shared Resources and/or

Services, and results in a separate instance of the MCMProduct class.

Note that an MCMProduct may exist in a purchased or unpurchased state. For example, it may be

exposed to an MCMCustomer using an MCMCatalog.

At this time, no attributes are defined for the MCMProduct class. Most attributes will likely be

realized using relationships and/or operations. For example, the usage of an MCMProduct can be

considered from two viewpoints: (1) how much content is left (e.g., a subscription limits down-

loads to 1Gb/months, and the current usage is 750Mb), and (2) how much time is left (e.g., the

MCMProduct is being used on a time-limited subscription). In either of these cases, an attribute is

inappropriate, since one or more computations and information from one or more relationships are

required to provide a value. In addition, the MCMProduct itself doesn’t “know” how much usage

is incurred, but can find out (e.g., by using an operation).

Table 37 defines the operations for this class:

Figure 17. The MCMProduct Class Hierarchy

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 109

Operation Name Description

getMCMProductParent() :

MCMProductCompo-

site[1..1]

This operation returns the parent of this MCMProduct object.
The parent is be of type MCMProductComposite. This opera-
tion takes no input parameters.

[D105] If this MCMProduct object has no parent, then a NULL

MCMProduct object SHOULD be returned.

setMCMProductParent(in

newParent :

MCMProductCompo-

site[1..1])

This operation defines the parent of this MCMProduct object.
The parent is defined in the input parameter, called newPar-
ent, and is be of type MCMProductComposite.

[D106] If this MCMProduct object already has a parent, then an

exception SHOULD be raised.

Table 37. Operations of the MCMProduct Class

The MCMProduct class participates in two aggregations, which are shown in Figure 17.

MCMHasProduct is defined in section 7.8.4.3, and MCMProductDefinedByMCMProductOffer is

defined in section 7.8.2.9.

7.8.4.2 MCMProductAtomic Class Definition

This is a concrete class, and specializes MCMProduct. In addition, each MCMProductAtomic has

characteristics and behavior that are externally visible.

[R70] This class MUST NOT contain another MCMProduct object.

At this time, no attributes are defined for the MCMProductAtomic class.

At this time, no operations are defined for the MCMProductAtomic class.

At this time, no relationships are defined for the MCMProductAtomic class.

7.8.4.3 MCMProductComposite Class Definition

This is a concrete class, and specializes MCMProduct. This class represents a set of related

MCMProduct objects that are organized into a tree structure.

[O58] Each MCMProduct MAY contain zero or more MCMProductAtomic and/or

zero or more MCMProductComposite objects.

At this time, no attributes are defined for the MCMProductComposite class. Most attributes will

likely be realized using relationships and/or operations. For example, a query to an instance of the

MCMProductComposite class to provide its set of contained MCMProducts (e.g., the individual

MCMProducts that represent a triple-play or quad-play Product) will be done by using class oper-

ations; the MCMProductComposite instance will query each of its contained MCMProducts

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 110

(which will in turn call their operations to acquire their MCMProducts), aggregate and organize

the information, and provide that information in its operation response.

Table 38 defines the operations for this class.

Operation Name Description

getMCMProductChildList()

: MCMProduct[1..*]

This operation returns the set of all MCMProduct objects
that are contained in this specific MCMProductComposite
object. There are no input parameters to this operation.
This operation returns a list of zero or more MCMProduct
objects (i.e., the list is made up of MCMProductAtomic
and/or MCMProductComposite objects).

[D107] If this MCMProductComposite object has no chil-

dren, then it SHOULD return a NULL MCMProduct-

Composite object.

setMCMProductChildList

(in childObjectList :

MCMProduct[1..*])

This operation defines a set of MCMProduct objects that
will be contained by this particular MCMProductComposite
object. This operation takes a single input parameter, called
childObjectList, which is an array of one or more MCMProd-
uct objects (i.e., one or more MCMProductAtomic and/or
MCMProductComposite objects). This operation first de-
letes any existing contained MCMProduct objects (and their
aggregations and association classes), and then instantiates
a new set of MCMProduct objects; in doing so, each
MCMProduct object is contained within this particular
MCMProductComposite object by creating an instance of
the MCMHasProduct aggregation.

[D108] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the

MCMHasProductDetail association class).

setMCMProductChildPar-

tialList (in childObjectList :

MCMProduct[1..*])

This operation defines a set of one or more MCMProduct
objects that should be contained within this particular
MCMProductComposite object WITHOUT affecting any
other existing contained MCMProduct objects or the objects
that are contained in them. This operation takes a single in-
put parameter, called childObjectList, which is an array of
one or more MCMProduct objects. This operation creates a
set of aggregations between this particular MCMProduct-
Composite object and each of the MCMProduct objects
identified in the childObjectList.

[D109] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the

MCMHasProductDetail association class).

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 111

delMCMProductChildList()

This operation deletes ALL contained MCMProduct objects
of this particular MCMProductComposite object. This has
the effect of first, removing the association class, and sec-
ond, removing the aggregation, between this MCMProduct-
Composite object and each MCMProduct object that is con-
tained in this MCMProductComposite object. This operation
has no input parameters.

delMCMProductPartial-

ChildList (in childObject-

List : MCMProduct[1..*])

This operation deletes a set of MCMProduct objects from
this particular MCMProductComposite object. This opera-
tion takes a single input parameter, called childObjectList,
which is an array of one or more MCMProduct objects. This
has the effect of first, removing the association class and
second, removing the aggregation, between each
MCMProduct object specified in the input parameter and
this MCMProductComposite object. Note that all other ag-
gregations between this MCMProductComposite and other
MCMProduct objects that are not identified in the input pa-
rameter are NOT affected.

Table 38. Operations of the MCMProductComposite Class

The MCMProductComposite class defines a single aggregation, called MCMHasProduct. This ag-

gregation is used to define the set of MCMProducts that are contained within this particular

MCMProductComposite. Its multiplicity is defined to be 0..1 – 0..*. This means that this aggrega-

tion is optional (i.e., the “0” part of the 0..1 cardinality). If this aggregation is instantiated (e.g., the

“1” part of the 0..1 cardinality), then zero or more MCMProduct objects can be aggregated by this

particular MCMProductComposite object. Note that the cardinality on the part side (MCMProd-

uct) is 0..*; this enables an MCMProductComposite object to be defined without having to define

an associated MCMProduct object for it to aggregate.

The semantics of the MCMHasProduct aggregation is realized using an association class, called

MCMHasProductDetail. This enables the semantics of the MCMHasProduct aggregation to be

realized using the attributes, operations, and relationships of the MCMHasProductDetail associa-

tion class.

The Policy Pattern may be used to control which specific MCMProduct objects are contained

within a given MCMProductComposite object for a given context. See Figure 3 for an exemplary

illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the

superclass of imperative, declarative, and intent policy rules.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 112

7.8.5 MCMService Class Hierarchy

The MCMService class hierarchy is shown in Figure 18.

7.8.5.1 MCMService Class Definition

This is an abstract class, and specializes MCMManagedEntity. It represents functionality that can

be used by different internal and external users (e.g., a management system and a Customer, re-

spectively) for different purposes. Services may be consumed by other Services, but not by Re-

sources. A Service has a distinct state.

At this time, no attributes are defined for the MCMService class. Most attributes will likely be

realized using relationships and/or operations. For example, the usage of an MCMService can be

considered from two viewpoints: (1) how much content is left (e.g., a subscription limits down-

loads to 1Gb/months, and the current usage is 750Mb), and (2) how much time is left (e.g., the

MCMService is being used on a time-limited subscription). In this example, the MCMService

itself doesn’t “know” how much usage is incurred, but can find out (e.g., by using a operation). As

another example, an MCMManagedEntity may need to know the status of all of the

MCMServiceEndpoints (see section 7.8.5.9) and MCMServiceComponents (see section 7.8.5.8)

that are associated with a particular MCMService. In either of these cases, an attribute is inappro-

priate, since one or more computations and information from one or more relationships are re-

quired to provide a value. This is exacerbated in the latter case, since MCMServiceComponents

Figure 18. The MCMService Class Hierarchy

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 113

and MCMServiceEndpoints are both objects that decorate an MCMDeliveredService (see section

7.8.5.4).

Table 39 defines the operations for this class:

Operation Name Description

getMCMServiceParent() :

MCMServiceCompo-

site[1..1]

This operation returns the parent of this MCMService object.
The parent MUST be of type MCMServiceComposite. This op-
eration takes no input parameters.

[D110] If this MCMService object has no parent, then a NULL

MCMService object SHOULD be returned.

setMCMServiceParent(in

newParent :

MCMServiceComposite

[1..1])

This operation defines the parent of this MCMService object.
The parent is defined in the input parameter, called newPar-
ent, and MUST be of type MCMServiceComposite.

[D111] If this MCMService object already has a parent, then an

exception SHOULD be raised.

Table 39. Operations of the MCMService Class

The MCMService class participates in three aggregations, as shown in Figure 18. The

MCMServiceDefinedByServiceOffer aggregation is defined in section 7.8.2.10, the MCMHasSer-

viceDecorator is defined in section 7.8.5.7, and the MCMHasService aggregation is defined in

section 7.8.5.3.

7.8.5.2 MCMServiceAtomic Class Definition

This is an abstract class, and specializes MCMService. This class represents stand-alone

MCMService objects.

[R71] This object MUST NOT contain another MCMService object.

At this time, no attributes are defined for the MCMServiceAtomic class.

At this time, no operations are defined for the MCMServiceAtomic class.

At this time, no relationships are defined for the MCMServiceAtomic class.

7.8.5.3 MCMServiceComposite Class Definition

This is an abstract class, and specializes MCMService. This class represents a set of related

MCMServiceComposite objects that are organized into a tree structure.

[O59] Each MCMServiceComposite MAY contain zero or more MCMServiceAtomic

and/or zero or more MCMServiceComposite objects.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 114

At this time, no attributes are defined for the MCMServiceComposite class. Most attributes will

likely be realized using relationships and/or operations. For example, a query to an instance of the

MCMServiceComposite class to provide its set of contained MCMServices will be done by using

class operations; the MCMServiceComposite instance will query each of its contained MCMSer-

viceAtomic and MCMServiceComposite objects (which will in turn call their operations to acquire

their MCMServices), aggregate and organize the information, and provide that information in its

operation response. In more detail, the MCMServiceComposite could ask for the set of MCMIn-

ternalServices (see section 7.8.5.6) that are used to support an MCMDeliveredService; the set of

MCMInternalServices in this example could include Analytics, Traffic Engineering, and other

MCMInternalServices that are not visible to the MCMCustomer.

Table 40 defines following operations for this class:

Operation Name Description

getMCMServiceList() :

MCMService[1..*]

This operation returns the set of all MCMService objects
that are contained in this specific MCMServiceComposite
object. There are no input parameters to this operation.
This operation returns a list of zero or more MCMService
objects (i.e., the list is made up of MCMServiceAtomic
and/or MCMServiceComposite objects).

[O60] If this object does not contain any MCMService ob-

jects, then a NULL MCMService object SHOULD be

returned.

setMCMServiceList (in

childObjectList :

MCMService [1..*])

This operation defines a set of MCMService objects that will
be contained by this particular MCMServiceComposite ob-
ject. This operation takes a single input parameter, called
childObjectList, which is an array of one or more
MCMService objects (i.e., one or more MCMServiceAtomic
and/or MCMServiceComposite objects). This operation first
deletes any existing contained MCMService objects (and
their aggregations and association classes), and then instan-
tiates a new set of MCMService objects; in doing so, each
MCMService object is contained within this particular
MCMServiceComposite object by creating an instance of the
MCMHasService aggregation.

[D112] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMHasService-

Detail association class).

setMCMServicePartialList

(in childObjectList :

MCMService[1..*])

This operation defines a set of one or more MCMService ob-
jects that should be contained within this particular
MCMServiceComposite object WITHOUT affecting any other

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 115

existing contained MCMService objects or the objects that
are contained in them. This operation takes a single input
parameter, called childObjectList, which is an array of one
or more MCMService objects. This operation creates a set of
aggregations between this particular MCMServiceCompo-
site object and each of the MCMService objects identified in
the childObjectList.

[D113] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMHasService-

Detail association class).

delMCMServiceList()

This operation deletes ALL contained MCMService objects of
this particular MCMServiceComposite object. This has the
effect of first, removing the association class, and second,
removing the aggregation, between this MCMServiceCom-
posite object and each MCMService object that is contained
in this MCMServiceComposite object. This operation has no
input parameters.

delMCMServicePartialList

(in childObjectList :

MCMService[1..*])

This operation deletes a set of MCMService objects from
this particular MCMServiceComposite object. This operation
takes a single input parameter, called childObjectList, which
is an array of one or more MCMService objects. This has the
effect of first, removing the association class and second, re-
moving the aggregation, between each MCMService object
specified in the input parameter and this MCMServiceCom-
posite object. Note that all other aggregations between this
MCMServiceComposite and other MCMService objects that
are not identified in the input parameter are NOT affected.

Table 40. Operations for the MCMServiceComposite Class

The MCMServiceComposite class defines a single aggregation, called MCMHasService. This ag-

gregation is used to define the set of MCMServices that are contained within this particular

MCMServiceComposite. Its multiplicity is defined to be 0..1 – 0..*. This means that this aggrega-

tion is optional (i.e., the “0” part of the 0..1 cardinality). If this aggregation is instantiated (e.g., the

“1” part of the 0..1 cardinality), then zero or more MCMService objects can be aggregated by this

particular MCMServiceComposite object. Note that the cardinality on the part side (MCMService)

is 0..*; this enables an MCMServiceComposite object to be defined without having to define an

associated MCMService object for it to aggregate.

The semantics of the MCMHasService aggregation is realized using an association class, called

MCMHasServiceDetail. This enables the semantics of the MCMHasService aggregation to be re-

alized using the attributes, operations, and relationships of the MCMHasServiceDetail association

class.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 116

The Policy Pattern may be used to control which specific MCMService objects are contained

within a given MCMServiceComposite object for a given context. See Figure 3 for an exemplary

illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the

superclass of imperative, declarative, and intent policy rules.

7.8.5.4 MCMDeliveredService Class Definition

This is an abstract class, and specializes MCMServiceAtomic. It represents MCMServices that are

used by consumers. Its functionality is defined by a set of one or more MCMServiceDecorators.

[R72] An operational MCMDeliveredService MUST have a set of MCMServiceDec-

orators.

At this time, no attributes are defined for the MCMDeliveredService class.

Table 41 defines following operations for this class:

Operation Name Description

getMCMServiceCompo-

nentList() : MCMService-

Component[1..*]

This operation returns the set of MCMServiceComponent ob-
jects for this MCMDeliveredService object. This operation
takes no input parameters.

First, this operation determines if there are any instances of
the MCMDeliveredServiceHasMCMServiceDecorator aggrega-
tion for this particular MCMDeliveredService object. For each
instance of the MCMDeliveredServiceHasMCMServiceDecora-
tor aggregation, the instance is inspected to see if the deco-
rating object is of type MCMServiceComponent. All
MCMServiceComponent objects found (for all aggregation in-
stances) are returned as an array.

[D114] If there are no instances of the MCMDeliveredSer-

viceHasMCMServiceDecorator aggregation, then a

NULL MCMServiceComponent object SHOULD be

returned.

[D115] If an instance of the MCMDeliveredSer-

viceHasMCMServiceDecorator aggregation exists, but

none of the decorating objects are of type

MCMServiceComponent, then a NULL MCMService-

Component object SHOULD be returned.

setMCMServiceComponent-

List (in newServiceCompo-

nentList :

MCMServiceCompo-

nent[1..*])

This operation defines a set of MCMServiceComponent ob-
jects that will decorate this MCMDeliveredService object.
Note that this operation will first disconnect all existing
MCMServiceComponent objects that are aggregated by this
MCMDeliveredService object. This is done by first, removing

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 117

the MCMDeliveredSeviceHasMCMServiceDecoratorDetail as-
sociation class, and second, deleting the MCMDeliveredSer-
viceHasMCMServiceDecorator aggregation, for every existing
MCMComponent that is currently aggregated by this
MCMDeliveredService. Note that this operation does not de-
lete the MCMServiceComponent, it simply deletes the aggre-
gation (and association class).

Once this is done, for each MCMServiceComponent in the in-
put parameter, an instance of the MCMDeliveredSer-
viceHasMCMServiceDecorator aggregation is created.

[D116] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMDeliveredSer-

viceHasMCMServiceDecoratorDetail association

class).

setMCMServiceComponent-

PartialList (in

newServiceComponentList :

MCMServiceCompo-

nent[1..*])

This operation will add a set of MCMServiceComponent ob-
jects that will decorate this MCMDeliveredService object
WITHOUT affecting any existing MCMServiceComponent ob-
jects. This operation takes a single input parameter, called
newServiceComponentList, which is an array of
MCMServiceComponent objects.

For each MCMServiceComponent in the input parameter, an
instance of the MCMDeliveredServiceHasMCMServiceDecora-
tor aggregation is created.

[D117] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMDeliveredSer-

viceHasMCMServiceDecoratorDetail association

class).

delMCMServiceCompo-

nentList()

This operation disconnects all MCMServiceComponent object
instances from this MCMDeliveredService object. This opera-
tion takes no input parameters.

First, this operation determines if there are any instances of
the MCMDeliveredServiceHasMCMServiceDecorator aggrega-
tion for this particular MCMDeliveredService object. For each
instance of the MCMDeliveredServiceHasMCMServiceDecora-
tor aggregation, the instance is inspected to see if the deco-
rating object is of type MCMServiceComponent. If so, then
the aggregation and its association class are both deleted.

delMCMServiceCompo-

nentPartialList (in

newServiceComponentList :

MCMServiceCompo-

nent[1..*])

This operation deletes a set of MCMServiceComponent ob-
jects from this MCMDeliveredService object WITHOUT affect-
ing any other existing contained MCMServiceComponent ob-
jects or the objects that are contained in them. This operation

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 118

takes a single input parameter, called newServiceComponent-
List, which is an array of one or more MCMServiceCompo-
nent objects. This has the effect of first, removing the associa-
tion class and second, removing the aggregation, between
each MCMServiceComponent object specified in the input pa-
rameter and this MCMDeliveredService object. Note that all
other aggregations between this MCMDeliveredService and
other MCMServiceComponent objects that are not identified
in the input parameter are NOT affected.

getMCMServiceEndpoint-

List() :

MCMServiceEndpoint[1..*]

This operation returns the set of MCMServiceEndpoint ob-
jects for this MCMDeliveredService object. This operation
takes no input parameters.

First, this operation determines if there are any instances of
the MCMDeliveredServiceHasMCMServiceDecorator aggrega-
tion for this particular MCMDeliveredService object. Then, for
each instance of the MCMDeliveredServiceHasMCMSer-
viceDecorator aggregation, the instance is inspected to see if
the decorating object is of type MCMServiceEndpoint . All
MCMServiceEndpoint objects found (for all aggregation in-
stances) are returned as an array.

[D118] If there are no instances of the MCMDeliveredSer-

viceHasMCMServiceDecorator aggregation, then a

NULL MCMServiceComponent object SHOULD be

returned.

[D119] If an instance of the MCMDeliveredSer-

viceHasMCMServiceDecorator aggregation exists, but

none of the decorating objects are of type

MCMServiceEndpoint, then a NULL MCMService-

Component object SHOULD be returned.

setMCMServiceComponent-

List (in newServiceCompo-

nentList :

MCMServiceEndpoint[1..*])

This operation defines a set of MCMServiceEndpoint objects
that will decorate this MCMDeliveredService object. Note
that this operation will first disconnect all existing
MCMServiceEndpoint objects that are aggregated by this
MCMDeliveredService object. This is done by first, removing
the MCMDeliveredServiceHasMCMServiceDecoratorDetail as-
sociation class, and second, deleting the MCMDeliveredSer-
viceHasMCMServiceDecorator aggregation, for every existing
MCMComponent that is currently aggregated by this
MCMDeliveredService. Note that this operation does not de-
lete the MCMServiceEndpoint object, it simply deletes the
aggregation (and association class).

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 119

Table 41. Operations for the MCMDeliveredService Class

At this time, a single aggregation is defined for the MCMDeliveredService class. This aggregation

is named MCMDeliveredServiceHasMCMServiceDecorator, and defines the set of

MCMServiceDecorators that are contained by this particular MCMDeliveredService object. The

multiplicity of this aggregation is 0..1 – 0..*. This means that this aggregation is optional (i.e., the

“0” part of the 0..1 cardinality). If this aggregation is instantiated (e.g., the “1” part of the 0..1

cardinality), then zero or more MCMServiceDecorator objects can be aggregated by this particular

MCMDeliveredService object. Note that the cardinality on the part side (MCMServiceDecorator)

is 0..*; this enables an MCMDeliveredService object to be defined without having to define an

associated MCMServiceDecorator object for it to aggregate.

The semantics of this aggregation are defined by the MCMDeliveredServiceHasMCMServiceDec-

oratorDetail association class. This enables the management system to control which set of con-

crete subclasses of MCMServiceDecorators are contained by this particular MCMDeliveredSer-

vice class. The Policy Pattern may be used to control which specific MCMServiceDecorator ob-

jects are contained within a given MCMDeliveredService object for a particular context. See Fig-

ure 3 for an exemplary illustration of the Policy Pattern. Note that MCMPolicyStructure is an

abstract class that is the superclass of imperative, declarative, and intent policy rules.

Once this is done, for each MCMServiceComponent in the in-
put parameter, an instance of the MCMDeliveredSer-
viceHasMCMServiceDecorator aggregation is created.

[D120] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMDeliveredSer-

viceHasMCMServiceDecoratorDetail association

class).

setMCMServiceComponent-

PartialList (in

newServiceComponentList :

MCMServiceEndpoint[1..*])

This operation will add a set of MCMServiceEndpoint objects
that will decorate this MCMDeliveredService object WITHOUT
affecting any existing MCMServiceEndpoint objects. This op-
eration takes a single input parameter, called
newServiceComponentList, which is an array of
MCMServiceComponent objects.

For each MCMServiceComponent in the input parameter, an
instance of the MCMDeliveredServiceHasMCMServiceDecora-
tor aggregation is created.

[D121] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMDeliveredSer-

viceHasMCMServiceDecoratorDetail association

class).

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 120

7.8.5.5 MCMOrderedService Class Definition

This is a concrete class, and specializes MCMDeliveredService. It represents an MCMService that

is used by an MCMProduct. This MCMService is realized within the Service Provider’s and/or

Partners’ infrastructure, but is delivered to an external entity (e.g., a Customer).

Note the difference between MCMOrderedService and MCMInternalService. The former is an

MCMService delivered to a Customer, while the latter is an MCMService that is necessary for the

proper operation of the infrastructure of the Service Provider or Partner.

At this time, no attributes are defined for the MCMOrderedService class.

At this time, no operations are defined for the MCMOrderedService class.

At this time, no relationships are defined for the MCMOrderedService class.

7.8.5.6 MCMInternalService Class Definition

This is a concrete class, and specializes MCMDeliveredService. It represents an MCMService that

is necessary for the proper operation of the Service Provider’s infrastructure. For example, it could

represent an internal telemetry collecting service, or an internal analytics service, or an internal

service to configure an object; in all of these examples, “internal” means that the service is not

visible to external entities outside of the MCMDomain see section 7.6) that it exists in.

At this time, no attributes are defined for the MCMInternalService class.

At this time, no operations are defined for the MCMInternalService class.

At this time, no relationships are defined for the MCMInternalService class.

7.8.5.7 MCMServiceDecorator Class Definition

This is an abstract class, and specializes MCMServiceAtomic. It applies the decorator pattern to

MCMServiceAtomic objects. It enables all or part of one or more concrete subclasses of

MCMServiceDecorator to “wrap” another concrete subclass of MCMServiceAtomic. For exam-

ple. any concrete subclass of MCMDeliveredService may be wrapped by any concrete subclass of

MCMServiceDecorator.

At this time, no attributes are defined for the MCMServiceDecorator class.

Table 42 defines following operations for this class:

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 121

Operation Name Description

getMCMServiceCompo-

nentList() : MCMService-

Component[1..*]

This operation returns the set of MCMServiceComponent ob-
jects that are decorating this MCMDeliveredService object.
There are no input parameters.

[D122] If this MCMDeliveredService object is not decorated

by any MCMServiceComponent objects, then a NULL

MCMServiceComponent object SHOULD be re-

turned.

setMCMServiceComponent-

List (in newDecoratorList :

MCMServiceCompo-

nent[1..*])

This operation defines the set of MCMServiceComponent ob-
jects that will decorate this MCMDeliveredService object. This
operation takes a single input parameter, called newDecora-
torList, which is of type MCMServiceComponent. This opera-
tion creates a set of aggregations between this particular
MCMDeliveredService object and the set of MCMServiceCom-
ponent objects identified in the input parameter. Note that
this operation first deletes any existing MCMServiceCompo-
nent objects (and their aggregations and association classes)
that decorate this MCMDeliveredService object, and then in-
stantiates a new set of MCMServiceComponent objects; in
doing so, each MCMServiceComponent object is attached to
this particular MCMDeliveredService object by first, creating
an instance of the MCMDeliveredServiceHasMCMServiceDec-
orator aggregation, and second, realizing that aggregation in-
stance as an association class.

[D123] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMDeliveredSer-

viceHasMCMServiceDecorator association class).

setMCMServiceComponent-

PartialList (in newDecora-

torList : MCMServiceCom-

ponent[1..*])

This operation defines a set of one or more MCMServiceCom-
ponent objects that will decorate this MCMDeliveredService
object WITHOUT affecting any other existing
MCMServiceComponent objects that are decorating this
MCMDeliveredService object. This operation takes a single in-
put parameter, called newDecoratorList, which is an array of
one or more MCMServiceComponent objects. This operation
creates a set of aggregations between this particular
MCMDeliveredService object and the set of MCMServiceCom-
ponent objects identified in the input parameter.

[D124] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMDeliveredSer-

viceHasMCMServiceDecorator association class).

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 122

delMCMServiceCompo-

nentList()

This operation deletes ALL MCMServiceComponent object in-
stances that are decorating this MCMDeliveredService object.
This operation first removes the association class, and sec-
ond, removes the aggregation, between this MCMDelivered-
Service object and each MCMServiceComponent object that
is decorating this MCMDeliveredService object. This opera-
tion has no input parameters. This operation does not delete
any of the MCMServiceComponent objects; it simply discon-
nects them from the MCMDeliveredService that they were
decorating.

delMCMServiceCompo-

nentPartialList (in

newDecoratorList :

MCMServiceCompo-

nent[1..*])

This operation deletes a set of MCMServiceComponent ob-
jects that are decorating this particular MCMDeliveredService
object. This operation takes a single input parameter, called
newDecoratorList, which is an array of one or more
MCMServiceComponent objects. This operation first removes
the association class and second, removes the aggregation,
between each MCMServiceComponent object specified in the
input parameter and this MCMDeliveredService object. Note
that all other aggregations between this MCMDeliveredSer-
vice object and other MCMServiceComponent objects that
are not specified in the input parameter are NOT affected.

getMCMServiceEndpoint-

List() : MCMServiceEnd-

point [1..*]

This operation returns the set of MCMServiceEndpoint ob-
jects that are decorating this MCMDeliveredService object.
There are no input parameters.

[D125] If this MCMDeliveredService object is not decorated

by any MCMServiceEndpoint objects, then a NULL

MCMServiceEndpoint object SHOULD be returned.

setMCMServiceEndpoint-

List (in newDecoratorList :

MCMServiceEndpoint[1..*])

This operation defines the set of MCMServiceEndpoint ob-
jects that will decorate this MCMDeliveredService object. This
operation takes a single input parameter, called newDecora-
torList, which is of type MCMServiceEndpoint. This operation
creates a set of aggregations between this particular
MCMDeliveredService object and the set of
MCMServiceEndpoint objects identified in the input parame-
ter. Note that this operation first deletes any existing
MCMServiceEndpoint objects (and their aggregations and as-
sociation classes) that decorate this MCMDeliveredService
object, and then instantiates a new set of
MCMServiceEndpoint objects; in doing so, each
MCMServiceEndpoint object is attached to this particular
MCMDeliveredService object by first, creating an instance of

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 123

the MCMDeliveredServiceHasMCMServiceDecorator aggrega-
tion, and second, realizing that aggregation instance as an as-
sociation class.

[D126] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMDeliveredSer-

viceHasMCMServiceDecorator association class).

setMCMServiceEndpoint-

PartialList (in newDecora-

torList : MCMServiceEnd-

point[1..*])

This operation defines a set of one or more
MCMServiceEndpoint objects that will decorate this
MCMDeliveredService object WITHOUT affecting any other
existing MCMServiceEndpoint objects that are decorating this
MCMDeliveredService object. This operation takes a single in-
put parameter, called newDecoratorList, which is an array of
one or more MCMServiceEndpoint objects. This operation
creates a set of aggregations between this particular
MCMDeliveredService object and the set of
MCMServiceEndpoint objects identified in the input parame-
ter.

[D127] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMDeliveredSer-

viceHasMCMServiceDecorator association class).

delMCMServiceEndpoint-

List()

This operation deletes ALL MCMServiceEndpoint object in-
stances that are decorating this MCMDeliveredService object.
This operation first removes the association class, and sec-
ond, removes the aggregation, between this MCMDelivered-
Service object and each MCMServiceEndpoint object that is
decorating this MCMDeliveredService object. This operation
has no input parameters. This operation does not delete any
of the MCMServiceEndpoint objects; it simply disconnects
them from the MCMDeliveredService that they were decorat-
ing.

delMCMServiceEndpoint-

PartialList (in

newDecoratorList :

MCMServiceEndpoint[1..*])

This operation deletes a set of MCMServiceEndpoint objects
that are decorating this particular MCMDeliveredService ob-
ject. This operation takes a single input parameter, called
newDecoratorList, which is an array of one or more
MCMServiceEndpoint objects. This operation first removes
the association class and second, removes the aggregation,
between each MCMServiceEndpoint object specified in the
input parameter and this MCMDeliveredService object. Note
that all other aggregations between this MCMDeliveredSer-
vice object and other MCMServiceEndpoint objects that are
not specified in the input parameter are NOT affected.

Table 42. Operations of the MCMServiceDecorator Class

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 124

At this time, a single aggregation is defined for MCMServiceDecorator. This aggregation is named

MCMHasServiceDecorator, and defines the set of MCMServiceDecorator objects that wrap (or

decorate) a concrete subclass of MCMService. This enables both MCMServiceAtomic as well as

MCMServiceComposite objects to be decorated. The multiplicity of this aggregation is 0..1 – 0..*.

This means that this aggregation is optional (i.e., the “0” part of the 0..1 cardinality). If this aggre-

gation is instantiated (e.g., the “1” part of the 0..1 cardinality), then zero or more MCMService

objects can be decorated (i.e., “wrapped”) by this particular MCMServiceDecorator object. Note

that the cardinality on the part side (MCMService) is 0..*; this enables an MCMServiceDecorator

object to be defined without having to define an associated MCMService object for it to aggregate.

The semantics of this aggregation are defined by the MCMHasServiceDecoratorDetail association

class. This enables the management system to control which set of concrete subclasses of

MCMServiceDecorator wrap this particular concrete subclass of MCMService. The Policy Pattern

may be used to control which specific MCMServiceDecorator objects are allowed to wrap a given

MCMService object for a given context. See Figure 3 for an exemplary illustration of the Policy

Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of imperative,

declarative, and intent policy rules.

The MCMServiceDecorator class also participates in another aggregation, called MCMDelivered-

ServiceHasMCMServiceDecorator; see section 7.8.5.4.

7.8.5.8 MCMServiceComponent Class Definition

This is a concrete class, and specializes MCMServiceDecorator. It makes available a set of

MCMServiceEndpoints, including the behavior of the MCMService between those

MCMServiceEndpoints (e.g., its connectivity). An MCMServiceComponent is contained in a sin-

gle MCMManagementDomain, which is managed independently by the Service Provider.

At this time, no attributes are currently defined for this class.

At this time, no operations are currently defined for this class.

At this time, no relationships are defined for this class.

7.8.5.9 MCMServiceEndpoint Class Definition

This is a concrete class, and specializes MCMServiceDecorator. It represents a (logical) point of

delivery of the Service to a consumer, as viewed by the Service. An MCMServiceEndpoint that is

in use MUST be associated with a single MCMServiceInterface. An MCMService may exist with-

out an MCMServiceInterface; in such a case, the MCMService is in a planned or some other type

of conceptual state, but it is not yet instantiated.

At this time, no attributes are currently defined for this class.

At this time, no operations are currently defined for this class.

At this time, a single aggregation is defined for the MCMServiceEndpoint class. This aggregation

is named MCMServiceEndpointHasMCMServiceInterface, and defines the set of

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 125

MCMServiceInterfaces that are associated with this particular MCMServiceEndpoint object. The

multiplicity of this aggregation is 0..1 - 1. This means that this aggregation is optional (i.e., the “0”

part of the 0..1 cardinality). If this aggregation is instantiated (e.g., the “1” part of the 0..1 cardi-

nality), then only one MCMServiceInterface object can be aggregated by this particular

MCMServiceEndoint object..

The semantics of this aggregation are defined by the

MCMServiceEndpointHasMCMServiceInterfaceDetail association class. This enables the man-

agement system to control which MCMServiceInterface is used with a given

MCMServiceEndpoint. The Policy Pattern may be used to control which specific

MCMServiceInterface object is used with a given MCMServiceEndpoint for a given context. See

Figure 3 for an exemplary illustration of the Policy Pattern. Note that MCMPolicyStructure is an

abstract class that is the superclass of imperative, declarative, and intent policy rules.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 126

7.8.6 MCMResource Class Hierarchy

The MCMResource class hierarchy is shown in Figure 19, Figure 20, and Figure 21.

Figure 19. The MCMResource Class Hierarchy, Part 1

7.8.6.1 MCMResource Class Definition

This is an abstract class, and specializes MCMManagedEntity. It provides capabilities that may be

consumed by other MCMResources and/or MCMServices. In addition, an MCMResource may

consume other MCMResources. An MCMResource has a distinct state. MCMResources are typi-

cally limited in quantity and/or availability. MCMResources may be logical or virtual in nature.

Note that physical entities are not defined as a subclass of MCMResource, because a physical

entity is not inherently manageable. Rather, physical entities are defined by the MCMPhysicalEn-

tity class, which is a subclass of MCMUnManagedEntity (see section 7.5).

At this time, no attributes are currently defined for this class. A future version of this specification

will add attributes to this class hierarchy after discussions about backwards compatibility with

other models (e.g., SNMP, YANG, etc.) are completed.

At this time, no operations are currently defined for this class.

The MCMResource class participates in a single aggregation, called MCMResourceDe-

finedByMCMResourceOffer, as shown in 7.8.2.11.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 127

7.8.6.2 MCMVirtualResource Class Hierarchy

This is an abstract class, and specializes MCMResource. It represents a set of objects that are

configured by software to produce a new set of objects that behave like the resource(s) being vir-

tualized. However, the behavior of the newly created set of MCMVirtualResources are not directly

associated with the underlying physical hardware.

At this time, no attributes are currently defined for this class.

Table 43 defines following operations for this class:

Operation Name Description

getMCMVirtualRe-

sourceParent() :

MCMVirtualRe-

source[1..1]

This operation returns the parent of this MCMVirtualResource
object. This operation takes no input parameters.

[D128] If this MCMVirtualResource object has no parent, then

a NULL MCMVirtualResource object SHOULD be re-

turned.

setMCMVirtualRe-

sourceParent(in newParent

: MCMVirtualRe-

sourceComposite[1..1])

This operation defines the parent of this MCMVirtualResource
object. The parent is defined in the input parameter, called
newParent, and is of type MCMVirtualResourceComposite.

[D129] If this MCMVirtualResource object already has a parent,

then an exception SHOULD be raised.

Table 43. Operations of the MCMVirtualResource Class

The MCMVirtualResource class participates in one aggregation, called MCMHasVirtualRe-

source; see section 7.8.6.4.

7.8.6.3 MCMVirtualResourceAtomic Class Definition

This is an abstract class, and specializes MCMVirtualResource.

It represents an MCMResource that is modeled as a single, stand-alone, manageable that is virtual,

and not directly associated with the underlying physical hardware.

[R73] This object MUST NOT contain another MCMVirtualResource object.

At this time, no attributes are currently defined for this class.

At this time, no operations are currently defined for this class.

At this time, no relationships are defined for this class.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 128

7.8.6.4 MCMVirtualResourceComposite Class Definition

This is an abstract class, and specializes MCMVirtualResource. It represents an MCMResource

that is composite in nature (e.g., made up of multiple distinct MCMResource objects, at least one

of which can be separately managed). An MCMVirtualResourceComposite represents a whole-

part relationship; this produces a tree-structured class hierarchy. Note that a composite object de-

fines three types of objects: the whole, the part, and the assembly of the whole with its parts.

[R74] An MCMVirtualResourceComposite object MAY contain zero or more

MCMVirtualResourceAtomic and/or zero or more MCMVirtualResourceCom-

posite objects.

[O61] Each MCMOrderComposite MAY contain one or more MCMOrderItems.

At this time, no attributes are defined for the MCMVirtualResourceComposite class. Most attrib-

utes will likely be realized using relationships and/or methods. For example, a query to an instance

of the MCMVirtualResourceComposite class to provide its set of contained MCMVirtualRe-

sources (e.g., a set of virtual Ethernet ports associated with a virtual NIC) will be done by using

class methods; the MCMVirtualResourceComposite instance will query each of its contained

MCMVirtualResources (which will in turn call their methods to acquire their MCMVirtualRe-

sources), aggregate and organize the information, and provide that information in its method re-

sponse.

Table 44 defines following operations for this class:

Operation Name Description

getMCMVirtualResource-

List() : MCMVirtualRe-

source[1..*]

This operation returns the set of all MCMVirtualResource ob-
jects that are contained in this specific MCMVirtualRe-
sourceComposite object. There are no input parameters to
this operation. This operation returns a list of zero or more
MCMVirtualResource objects (i.e., the list is made up of
MCMVirtualResourceAtomic and/or MCMVirtualRe-
sourceComposite objects).

[D130] If this MCMVirtualResourceComposite object has no

children, then it SHOULD return a NULL MCMVirtu-

alResource object.

setMCMVirtualResource-

List (in childObjectList :

MCMVirtualResource

[1..*])

This operation defines a set of MCMVirtualResource objects
that will be contained by this particular MCMVirtualRe-
sourceComposite object. This operation takes a single input
parameter, called childObjectList, which is an array of one or
more MCMVirtualResource objects (i.e., one or more
MCMVirtualResourceAtomic and/or MCMVirtualResource-
Composite objects). This operation first deletes any existing

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 129

contained MCMVirtualResource objects (and their aggrega-
tions and association classes), and then instantiates a new set
of MCMVirtualResource objects; in doing so, each MCMVirtu-
alResource object is contained within this particular
MCMVirtualResourceComposite object by creating an in-
stance of the MCMHasVirtualResource aggregation.

[D131] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMHasVirtualRe-

sourceDetail association class).

setMCMVirtualResource-

PartialList (in childOb-

jectList : MCMVirtualRe-

source[1..*])

This operation defines a set of one or more MCMVirtualRe-
source objects that should be contained within this particular
MCMVirtualResourceComposite object WITHOUT affecting
any other existing contained MCMVirtualResource objects or
the objects that are contained in them. This operation takes a
single input parameter, called childObjectList, which is an ar-
ray of one or more MCMVirtualResource objects. This opera-
tion creates a set of aggregations between this particular
MCMVirtualResourceComposite object and each of the
MCMVirtualResource objects identified in the childObjectList.

[D132] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMHasVirtualRe-

sourceDetail association class).

delMCMVirtualResource-

List()

This operation deletes ALL contained MCMVirtualResource
objects of this particular MCMVirtualResourceComposite ob-
ject. This has the effect of first, removing the association
class, and second, removing the aggregation, between this
MCMVirtualResource Composite object and each MCMVirtu-
alResource object that is contained in this MCMVirtualRe-
sourceComposite object. This operation has no input parame-
ters.

delMCMVirtualRe-

sourcePartialList (in chil-

dObjectList : MCMVirtu-

alResource [1..*])

This operation deletes a set of MCMVirtualResource objects
from this particular MCMVirtualResourceComposite object.
This operation takes a single input parameter, called childOb-
jectList, which is an array of one or more MCMVirtualRe-
source objects. This has the effect of first, removing the asso-
ciation class and second, removing the aggregation, between
each MCMVirtualResource object specified in the input pa-
rameter and this MCMVirtualResourceComposite object. Note
that all other aggregations between this MCMVirtualRe-
sourceComposite and other MCMVirtualResource objects that
are not identified in the input parameter are NOT affected.

Table 44. Operations of the MCMVirtualResourceComposite Class

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 130

The MCMVirtualResourceComposite class defines a single aggregation, called MCMHasVirtu-

alResource. The multiplicity of this aggregation is 0..1 – 0..*. This means that this aggregation is

optional (i.e., the “0” part of the 0..1 cardinality). If this aggregation is instantiated (e.g., the “1”

part of the 0..1 cardinality), then zero or more MCMVirtualResource objects can be aggregated by

this particular MCMVirtualResourceComposite object. Note that the cardinality on the part side

(MCMVirtualResource) is 0..*; this enables an MCMVirtualResourceComposite object to be de-

fined without having to define an associated MCMVirtualResource object for it to aggregate.

The semantics of this aggregation are defined by the MCMHasVirtualResourceDetail association

class. This enables the management system to control which set of concrete subclasses of

MCMVirtualResource are aggregated by this particular MCMVirtualResourceComposite object.

The Policy Pattern may be used to control which specific MCMVirtualResource objects can be

aggregated by which MCMVirtualResourceComposite objects for a given context. See Figure 3

for an exemplary illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract

class that is the superclass of imperative, declarative, and intent policy rules.

7.8.6.5 MCMLogicalResource Class Definition

The top of the MCMLogicalResource class hierarchy is shown in Figure 20.

This is an abstract class, and specializes MCMResource. It represents MCMResources that are

neither physical nor virtual in nature, and which have inherent digital communication and man-

agement capabilities. Examples include operating systems, application and management software,

protocols, and the logic required to perform forwarding, routing, and other functions.

At this time, no attributes are currently defined for this class.

Figure 20. MCMResource Class Hierarchy, Part 2

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 131

Table 45 defines following operations for this class:

Operation Name Description

getMCMLogicalRe-

sourceParent() :

MCMLogicalRe-

source[1..1]

This operation returns the parent of this MCMLogicalResource
object. This operation takes no input parameters.

[D133] If this MCMLogicalResource object has no parent, then

a NULL MCMLogicalResource object SHOULD be re-

turned.

getMCMLogicalRe-

sourceParent (in newPar-

ent) : MCMLogicalRe-

source[1..1]

This operation defines the parent of this MCMLogicalResource
object. The parent is defined in the input parameter, called
newParent, and is of type MCMLogicalResourceComposite.

[D134] If this MCMLogicalResource object already has a par-

ent, then an exception SHOULD be raised.

Table 45. Operations of the MCMLogicalResource Class

The MCMLogicalResource class participates in one aggregation, called MCMHasLogicalRe-

source; see section 7.8.6.7.

7.8.6.6 MCMLogicalResourceAtomic Class Definition

This is an abstract class, and specializes MCMLogicalResource. It represents an MCMResource

that is modeled as a single, stand-alone, manageable object.

[R75] This object MUST NOT contain another MCMLogicalResource object.

At this time, no attributes are currently defined for this class.

At this time, no operations are currently defined for this class.

At this time, no relationships are defined for this class.

7.8.6.7 MCMLogicalResourceComposite Class Definition

This is an abstract class, and specializes MCMLogicalResource. It represents MCMResources that

are composite in nature (e.g., made up of multiple distinct MCMResource objects, at least one of

which can be separately managed). An MCMLogicalResourceComposite represents a whole-part

relationship; this produces a tree-structured class hierarchy. Note that a composite object defines

three types of objects: the whole, the part, and the assembly of the whole with its parts.

[O62] An MCMLogicalResourceComposite object MAY contain zero or more

MCMLogicalResourceAtomic and/or zero or more MCMLogicalResourceCom-

posite objects.

At this time, no attributes are defined for the MCMLogicalResourceComposite class. Most attrib-

utes will likely be realized using relationships and/or methods. For example, the usage of an

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 132

MCMLogicalResourceComposite can be considered from two viewpoints: (1) how much content

is left (e.g., a subscription limits downloads to 1Gb/months, and the current usage is 750Mb), and

(2) how much time is left (e.g., it is being used on a time-limited subscription). In either of these

cases, an attribute is inappropriate, since one or more computations and information from one or

more relationships are required to provide a value. In addition, the MCMLogicalResourceCompo-

site itself doesn’t “know” how much usage is incurred, but can find out (e.g., by using a method).

Hence, class methods will likely be added to provide more detailed information for instances of

this class in the next CfC.

Table 46 defines following operations for this class:

Operation Name Description

getMCMLogicalResource-

List() : MCMLogicalRe-

source[1..*]

This operation returns the set of all MCMLogicalResource
objects that are contained in this specific MCMLogicalRe-
sourceComposite object. There are no input parameters to
this operation. This operation returns a list of zero or more
MCMLogicalResource objects (i.e., the list is made up of
MCMLogicalResourceAtomic and/or MCMLogicalRe-
sourceComposite objects).

[D135] If this MCMLogicalResourceComposite object has

no children, then it SHOULD return a NULL

MCMLogicalResource object.

setMCMLogicalResource-

List (in childObjectList :

MCMLogicalResource

[1..*])

This operation defines a set of MCMLogicalResource objects
that will be contained by this particular MCMLogicalRe-
sourceComposite object. This operation takes a single input
parameter, called childObjectList, which is an array of one
or more MCMLogicalResource objects (i.e., one or more
MCMLogicalResourceAtomic and/or MCMLogicalResource-
Composite objects). This operation first deletes any existing
contained MCMLogicalResource objects (and their aggrega-
tions and association classes), and then instantiates a new
set of MCMLogicalResource objects; in doing so, each
MCMLogicalResource object is contained within this particu-
lar MCMLogicalResourceComposite object by creating an in-
stance of the MCMHasLogicalResource aggregation.

[D136] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMHasLogi-

calResourceDetail association class).

setMCMLogicalResource-

PartialList (in childObject-

List : MCMLogicalRe-

source[1..*])

This operation defines a set of one or more MCMLogicalRe-
source objects that should be contained within this particu-
lar MCMLogicalResourceComposite object WITHOUT affect-
ing any other existing contained MCMLogicalResource ob-

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 133

jects or the objects that are contained in them. This opera-
tion takes a single input parameter, called childObjectList,
which is an array of one or more MCMLogicalResource ob-
jects. This operation creates a set of aggregations between
this particular MCMLogicalResourceComposite object and
each of the MCMLogicalResource objects identified in the
childObjectList.

[D137] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMHasLogi-

calResourceDetail association class).

delMCMLogicalResource-

List()

This operation deletes ALL contained MCMLogicalResource
objects of this particular MCMLogicalResourceComposite
object. This has the effect of first, removing the association
class, and second, removing the aggregation, between this
MCMLogicalResourceComposite object and each MCMLogi-
calResource object that is contained in this MCMLogicalRe-
sourceComposite object. This operation has no input pa-
rameters.

delMCMLogicalRe-

sourcePartialList (in chil-

dObjectList : MCMLogi-

calResource [1..*])

This operation deletes a set of MCMLogicalResource objects
from this particular MCMLogicalResourceComposite object.
This operation takes a single input parameter, called child-
ObjectList, which is an array of one or more MCMLogicalRe-
source objects. This has the effect of first, removing the as-
sociationnc class and second, removing the aggregation, be-
tween each MCMLogicalResource object specified in the in-
put parameter and this MCMLogicalResourceComposite ob-
ject. Note that all other aggregations between this
MCMLogicalResourceComposite and other MCMLogicalRe-
source objects that are not identified in the input parameter
are NOT affected.

Table 46. Operations of the MCMLogicalResource Class

At this time, a single aggregation is defined for the MCMLogicalResourceComposite class. This

aggregation is named MCMHasLogicalResource, and defines the set of MCMLogicalResource

objects that are contained in this particular MCMLogicalResourceComposite object. The multi-

plicity of this aggregation is 0..1 – 0..*. This means that this aggregation is optional (i.e., the “0”

part of the 0..1 cardinality). If this aggregation is instantiated (e.g., the “1” part of the 0..1 cardi-

nality), then zero or more MCMLogicalResource objects can be aggregated by this particular

MCMLogicalResourceComposite object. Note that the cardinality on the part side (MCMLogi-

calResource) is 0..*; this enables an MCMLogicalResourceComposite object to be defined without

having to define an associated MCMLogicalResource object for it to aggregate.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 134

The semantics of this aggregation are defined by the MCMHasLogicalResourceDetail association

class. This enables the management system to control which set of concrete subclasses of

MCMLogicalResource are contained by this particular MCMLogicalResourceComposite. This en-

ables a particular set of MCMLogicalResource (i.e., zero or more MCMLogicalResourceAtomic

and/or zero or more MCMLogicalResourceComposite) objects to be contained within a particular

MCMLogicalResourceComposite object. The Policy Pattern may be used to control which specific

MCMLogicalResource objects are contained within a given MCMLogicalResourceComposite for

a given context. See Figure 3 for an exemplary illustration of the Policy Pattern. Note that

MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and in-

tent policy rules.

7.8.6.8 MCMCatalog Class Definition

Figure 21 shows the remaining subclasses of MCMLogicalResourceAtomic and MCMLogicalRe-

sourceComposite.

Figure 21. MCMResource Class Hierarchy, Part 3

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 135

MCMCatalog is a concrete class, and specializes MCMLogicalResourceComposite. It defines a

container that aggregates a set of MCMCatalogItem objects. Each MCMCatalogItem object can

either represent an item of interest to the MCMCatalog directly, or can represent a set of

MCMManagedEntities (using the MCMCatalogItemContainsMCMManagedEntity aggregation).

The semantics of this aggregation enable a set of MCMRoles or other MCMManagedEntities to

control which MCMCatalogItems are viewable in a given MCMCatalog. The set of MCMCata-

logItems are organized according to one or more identifying objectives (e.g., subject attributes

added in a subclass of MCMCatalog, or metadata attached to the MCMCatalog).

At this time, no attributes are defined for the MCMCatalog class. Most attributes will likely be

realized using relationships and/or methods. For example, a query to an instance of the MCMCat-

alog class to provide its set of contained MCMCatalog and MCMCatalogItem objects will be done

by using class methods. The MCMCatalog instance will query each of its contained MCMCatalog

objects, as well as any MCMCatalogItem objects that it contains, aggregate and organize the in-

formation, and provide that information in its method response.

Table 47 defines following operations for this class:

Operation Name Description

getMCMCatalogItemList()

: MCMCatalogItem[1..*]

This operation returns the set of all MCMCatalogItem ob-
jects that are contained in this specific MCMCatalog object,
and not for any MCMCatalogs that are contained within this
MCMCatalog object. There are no input parameters to this
operation. This operation returns a list of zero or more
MCMCatalogItem objects.

[D138] If this object does not contain any MCMCatalogItem

objects, then a NULL MCMCatalogItem object

SHOULD be returned.

setMCMCatalogItemList(in

newCatalogItemList :

MCMCatalogItem[1..*])

This operation defines a set of MCMCatalogItem objects
that will be contained by this particular MCMCatalog object,
and not for any MCMCatalogs that are contained within this
MCMCatalog object. This operation takes a single input pa-
rameter, called newCatalogItemList, which is an array of one
or more MCMCatalogItem objects. This operation first de-
letes any existing contained MCMCatalogItem objects (and
their aggregations and association classes), and then instan-
tiates a new set of MCMCatalogItem objects; in doing so,
each MCMCatalogItem object is contained within this par-
ticular MCMCatalog object by creating an instance of the
MCMHasLogicalResource aggregation.

[D139] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMHasLogi-

calResourceDetail association class).

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 136

setMCMServicePartialList

(in newCatalogItemList:

MCMCatalogItem[1..*])

This operation defines a set of one or more MCMCata-
logItem objects that should be contained within this particu-
lar MCMCatalog object WITHOUT affecting any other exist-
ing contained MCMCatalogItem or MCMCatalog objects.
This operation takes a single input parameter, called new-
CatalogItemList, which is an array of one or more MCMCata-
logItem objects. This operation creates a set of aggregations
between this particular MCMCatalog object and each of the
MCMCatalogItem objects identified in the newCatalogItem.

[D140] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMHasLogi-

calResourceDetail association class).

delMCMCatalogItemList()

This operation deletes ALL contained MCMCatalogItem ob-
jects contained within this particular MCMCatalog object.
This has the effect of first, removing the association class,
and second, removing the aggregation, between this
MCMCatalog object and each MCMCatalogItem object that
is contained in this MCMCatalog object. This operation has
no input parameters.

delMCMCatalogItemPar-

tialList (in newCata-

logItemList : MCMCata-

logItem[1..*])

This operation deletes a set of MCMCatalogItem objects
from this particular MCMCatalog object. This operation
takes a single input parameter, called newCatalogItemList,
which is an array of one or more MCMCatalogItem objects.
This has the effect of first, removing the association class
and second, removing the aggregation, between each
MCMCatalogItem object specified in the input parameter
and this MCMCatalog object. Note that all other aggrega-
tions between this MCMCatalog and other MCMCata-
logItem objects that are not identified in the input parame-
ter are NOT affected.

Table 47. Operations of the Catalog Class

At this time, no relationships are defined for this class. Note that MCMCatalog objects may contain

any number of MCMCatalogItems, because an MCMCatalog inherits the ability to aggregate

MCMLogicalResourceAtomic and/or MCMLogicalResourceComposite objects from MCMLogi-

calResourceComposite. This also means that an MCMCatalog may itself contain other MCMCat-

alogs (e.g., to define a tree structure of catalogs).

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 137

7.8.6.9 MCMCatalogItem Class Definition

This is an abstract class, and specializes MCMLogicalResourceAtomic. It represents a set of

MCMManagedEntities that are contained in a particular MCMCatalog and organized by a partic-

ular identifying objective. The MCMManagedEntities to be contained in an MCMCatalog can ei-

ther be defined indirectly using the MCMCatalogItemContainsMCMManagedEntity aggregation,

or using another means (e.g., creating a subclass with dedicated attributes and operations that de-

scribe the MCMManagedEntity directly).

No attributes are currently defined for this class.

No operations are currently defined for this class.

At this time, a single relationship, called MCMCatalogItemContainsMCMManagedEntity, is de-

fined for the MCMCatalogItem class. Its multiplicity is defined as 0..1 – 0..*. This means that this

aggregation is optional (i.e., the “0” part of the 0..1 cardinality). If this aggregation is instantiated

(e.g., the “1” part of the 0..1 cardinality), then zero or more MCMManagedEntity objects can be

aggregated by this particular MCMCatalogItem object. Note that the cardinality on the part side

(MCMManagedEntity) is 0..*; this enables an MCMCatalogItem object to be defined without hav-

ing to define an associated MCMManagedEntity object for it to aggregate. Significantly, this

means that an MCMCatalogItem may be any type of MCMManagedEntity; this addresses the use

case of managed objects (e.g., a VNF) not being able to be categorized into a single subclass (i.e.,

is it a product, resource, or service).

The semantics of this aggregation are defined by the MCMCatalogItemContainsMCMMan-

agedEntityDetail association class. This enables the semantics of the aggregation to be defined

using the attributes and behavior of this association class. For example, it can be used to define

which MCMManagedEntity objects are allowed to be associated with which MCMCatalogItem

objects.

Both of the above association classes can be further enhanced by using the Policy Pattern (see

Figure 3) to define policy rules that constrain which MCMManagedEntity objects are attached to

which MCMCatalogItem object. Note that MCMPolicyStructure is an abstract class that is the

superclass of imperative, declarative, and intent policy rules.

7.8.6.10 MCMServiceInterface Class Definition

This is a concrete class, and specializes MCMLogicalResourceAtomic. It represents a logical point

in a topology where other MCMResources may be used to enable an MCMServiceEndpoint to

function (i.e., be instantiated). An MCMServiceInterface may support multiple

MCMServiceEndpoints.

No attributes are currently defined for this class.

No operations are currently defined for this class.

At this time, a single aggregation is defined for the MCMServiceInterface class. This aggregation

is named MCMServiceEndpointHasMCMServiceInterface, and is defined in section 7.8.6.10.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 138

7.9 MCMParty Class Hierarchy

The MCMParty class has two subclasses, as shown in Figure 22.

Table 48 defines the purpose of this hierarchy, and aligns them to MEF 55 [1]. The purpose of the

MCMParty class hierarchy is to represent different individuals, groups of people, and organiza-

tions that perform business functions in the managed environment. Such people could be internal

or external to the organization. Note that MCMParty aggregates one or more MCMPartyRole ob-

jects (see section 7.11.2.2), which both provide a context for the business function as well as define

a set of responsibilities that a particular MCMParty has.

Name of Class Function Relation to MEF 55

MCMParty

Represents either an individual per-

son or a group of people. An

MCMParty may take on zero or

more MCMPartyRoles.

Represents human actors in

the MEF LSO RA.

MCMPerson Represents an individual Person
Represents individual human

actors in the MEF LSO RA.

MCMOrganization
Represents a group of People

and/or Organizations

Represents human actors in a

group in the MEF LSO RA.

Table 48. Functions of the MCMParty Class and its Subclasses

Figure 22. MCMParty Class Hierarchy

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 139

The following subsections describe these classes in more detail.

7.9.1 MCMParty Class Definition

This is an abstract class, and specializes MCMEntity. It represents either an individual person or a

group of people functioning as an organization. A group of people can also be structured as an

organization made up of organizational units. An MCMParty may take on zero or more MCMPar-

tyRoles; this acts as a filter. For example, an MCMParty that takes on the role HelpDesk can be

used to represent any group or individual that performs a HelpDesk function. Behavior and char-

acteristics that are common to both organization and person objects are modeled in this class.

At this time, no attributes are defined for this class.

Class operations and relationships are used to provide flexibility and power in using this class (and

its subclasses). For example, an MCMManagedEntity may need to know which set of MCMPar-

tyRoles are currently associated with this particular MCMParty. Since MCMPartyRoles can

change dynamically at runtime, an attribute cannot accurately reflect this. In contrast, a method

can simply look for instantiated aggregations of type MCMPartyHasMCMPartyRole (see next

paragraph); it can even look at the MCMPartyHasMCMPartyRoleDetail association class, and/or

associated MCMMetaData objects, if it needs further detail.

Table 49 defines following operations for this class:

Operation Name Description

getMCMPartyParent() :

MCMOrganization[1..1]

This operation returns the parent of this MCMParty object.
This operation takes no input parameters.

[D141] If this MCMParty object has no parent, then a NULL

MCMParty object SHOULD be returned.

setMCMPartyParent(in

newParent : MCMOrgani-

zation [1..1])

This operation defines the parent of this MCMParty object.
The parent is defined in the input parameter, called newPar-
ent, and is of type MCMOrganization.

[D142] If this MCMService object already has a parent, then

an exception SHOULD be raised.

getMCMPartyRoleList() :

MCMPartyRole[1..*]

This operation returns the set of MCMPartyRole objects that
are decorating this MCMParty object. There are no input pa-
rameters.
This operation identifies any instances of the MCMPar-
tyHasMCMPartyRole aggregation. For each instance of this
aggregation, this operation then adds each MCMPartyRole
defined in this aggregation, and adds each MCMPartyRole to
an array that is returned by this operation.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 140

[D143] If this MCMParty object does not aggregate any

MCMPartyRole objects, then a NULL MCMPartyRole

object SHOULD be returned.

setMCMPartyRoleList (in

newPartyRoleList :

MCMPartyRole[1..*])

This operation defines the set of MCMPartyRole objects that
will be aggregated by this MCMParty object. This operation
takes a single input parameter, called newPartyRoleList,
which is of type MCMPartyRole. This operation creates a set
of aggregations between this particular MCMParty object
and the set of MCMPartyRole objects identified in the input
parameter. Note that this operation first deletes any existing
MCMPartyRole objects (and their aggregations and associa-
tion classes) that were aggregated by this MCMParty object,
and then instantiates a new set of MCMPartyRole objects; in
doing so, each MCMPartyRole object is attached to this par-
ticular MCMParty object by first, creating an instance of the
MCMPartyHasMCMPartyRole aggregation, and second, realiz-
ing that aggregation instance as an association class.

[D144] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMPar-

tyHasMCMPartyRoleDetail association class).

setMCMPartyRolePartial-

List (in newPartyRoleList:

MCMPartyRole[1..*])

This operation defines a set of one or more MCMPartyRole

objects that will decorate this MCMParty object WITHOUT af-
fecting any other existing MCMPartyRole objects that are
decorating this MCMParty object. This operation takes a sin-
gle input parameter, called newPartyRoleList, which is an ar-
ray of one or more MCMPartyRole objects. This operation
creates a set of aggregations between this particular
MCMParty object and the set of MCMPartyRole objects
identified in the input parameter.

[D145] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMPar-

tyHasMCMPartyRoleDetail association class).

delMCMPartyRoleList()

This operation deletes ALL MCMPartyRole object instances
that are decorating this MCMParty object. This operation
first removes the association class, and second, removes the
aggregation, between this MCMParty object and each
MCMPartyRole object that is aggregated by this MCMParty

object. This operation has no input parameters. This opera-
tion does not delete any of the MCMPartyRole objects; it
simply disconnects them from the MCMParty that they were
aggregating.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 141

delMCMPartyRolePartial-

List (in newPartyRoleList :

MCMPartyRole[1..*])

This operation deletes a set of MCMPartyRole objects that
are aggregated by this particular MCMParty object. This oper-
ation takes a single input parameter, called newPartyRoleList,
which is an array of one or more MCMPartyRole objects. This
operation first removes the association class and second, re-
moves the aggregation, between each MCMPartyRole object
specified in the input parameter and this MCMParty object.
Note that all other aggregations between this MCMParty ob-
ject and other MCMPartyRole objects that are not specified in
the input parameter are NOT affected.

Table 49. Operations of the MCMParty Class

 At this time, a single aggregation is defined for the MCMParty class. This aggregation is named

MCMPartyHasMCMPartyRole, and defines the set of MCMPartyRoles that this particular

MCMParty can take on. The multiplicity of this aggregation is 0..1 – 0..*. This means that this

aggregation is optional (i.e., the “0” part of the 0..1 cardinality). If this aggregation is instantiated

(e.g., the “1” part of the 0..1 cardinality), then zero or more MCMPartyRole objects can be aggre-

gated by this particular MCMParty object. Note that the cardinality on the part side (MCMPartyR-

ole) is 0..*; this enables an MCMParty object to be defined without having to define an associated

MCMPartyRole object for it to aggregate.

The semantics of this aggregation are defined by the MCMPartyHasMCMPartyRoleDetail associ-

ation class. This enables the management system to control which set of concrete subclasses of

MCMPartyHasMCMPartyRole are taken on by this particular MCMParty. The Policy Pattern may

be used to control which specific responsibilities, which are defined by a set of MCMPar-

tyHasMCMPartyRole objects, are taken on by a given MCMParty for a given context. See Figure

3 for an exemplary illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract

class that is the superclass of imperative, declarative, and intent policy rules.

The MCMParty class also participates in a single aggregation, called MCMHasMCMParty; please

see section 7.9.

One additional important aggregation is MCMPartyRoleDetailHasMCMContact; please see sec-

tion 7.9.1.

7.9.2 MCMOrganization Class Definition

This is a concrete class, and specializes MCMParty. An MCMOrganization is defined as a group

of people (e.g., defined as instances of either MCMPerson, MCMOrganization, or an appropriate

subclass of each) identified by shared interests or purpose. This includes attributes such as the

legal name of the organization; attributes such as the head of the organization, or which types of

employees belong to which organization, are instead modeled as subclasses of MCMMetaData

and associated with that MCMOrganization using the Role-Object pattern, since (1) they are not

necessary to define the concept of an MCMOrganization, and (2) they can change dynamically.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 142

An MCMOrganization object can interact with other MCMOrganization and MCMPerson objects

directly or through its MCMPartyRole(s). Behavior and characteristics that are specific to an

MCMOrganization are modeled using a combination of classes for specific concepts augmented

by the Role-Object pattern for each; this ensures that (1) the model is not dependent on one par-

ticular person, group, or organization, and (2) it separates the characteristics and behavior of the

Entity being modeled from its responsibilities and functions. This provides a more accurate and

extensible model.

Table 50 defines following attributes for this class:

Attribute Name
Manda-

tory? Description

mcmIsLegalEntity

: Boolean[0..1]

NO This is a Boolean attribute. If its value is TRUE, then this or-
ganization is a legal entity.

mcmIsTempOrg :

Boolean[0..1]

NO This is a Boolean attribute. If its value is TRUE, then this or-
ganization represents a temporary organization that has a
defined lifetime (defined in associated MCMMetaData). Its
budget, space, resources, and other factors are allocated
only for a defined period.

mcmIsVirtualOrg

: Boolean[0..1]

NO This is a Boolean attribute. If its value is TRUE, then this or-
ganization represents a virtual organization that convenes
using an electronic mechanism (e.g, via phone or Internet).

Table 50. Attributes of the MCMOrganization Class

Table 51 defines following operations for this class:

Operation Name Description

getMCMIsLegalEntity() :

Boolean[1..1]

This operation returns the value of the mcmIsLegalEntity at-
tribute. This operation takes no input parameters.

setMCMIsLegalEntity(in

isLegal : Boolean[1..1])

This operation defines the value of the mcmIsLegalEntity at-
tribute. It contains a single input parameter, of type Boolean. If
the value of this attribute is TRUE, then this MCMOrganization
is a legal entity.

getMCMIsTempOrg():

Boolean[1..1]

This operation returns the value of the mcmIsTempOrg attrib-
ute. This operation takes no input parameters.

setMCMIsTempOrg (in

isTemp : Boolean[1..1])

This operation defines the value of the mcmIsTempOrg attrib-
ute. It contains a single input parameter, of type Boolean. If
the value of this attribute is TRUE, then this MCMOrganization
is a temporary organization.

getMCMIsVirtualOrg():

Boolean[1..1]

This operation returns the value of the mcmIsLegalEntity at-
tribute. This operation takes no input parameters.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 143

setMCMIsVirtualOrg(in

isVirtualOrg : Bool-

ean[1..1])

This operation defines the value of the mcmIsLegalEntity at-
tribute. It contains a single input parameter, of type Boolean. If
the value of this attribute is TRUE, then this MCMOrganization
is a virtual organization.

Table 51. Operations of the MCMOrganization Class

At this time, a single aggregation is defined for the MCMOrganization class. It is named

MCMHasMCMParty. The multiplicity of this aggregation is 0..1 – 0..*. This means that this ag-

gregation is optional (i.e., the “0” part of the 0..1 cardinality). If this aggregation is instantiated

(e.g., the “1” part of the 0..1 cardinality), then zero or more MCMParty objects can be aggregated

by this particular MCMOganization object. Note that the cardinality on the part side (MCMParty)

is 0..*; this enables an MCMOganization object to be defined without having to define an associ-

ated MCMParty object for it to aggregate.

The semantics of this aggregation are defined by the MCMHasMCMPartyDetail association class.

This enables the management system to control which set of concrete subclasses of MCMParty

objects are aggregated by this particular MCMOrganization.

The Policy Pattern may be used to control which specific part objects (i.e., MCMParty) are asso-

ciated with which specific aggregate (i.e., MCMOrganization) object, respectively, for a given

context. See Figure 3 for an exemplary illustration of the Policy Pattern. Note that MCMPoli-

cyStructure is an abstract class that is the superclass of imperative, declarative, and intent policy

rules.

7.9.3 MCMPerson Class Definition

This is a concrete class, and specializes MCMParty. An MCMPerson defines the concept of an

individual that may have a set of MCMPartyRoles that formalize the responsibilities of that indi-

vidual. Attributes such as username, password, phone number(s), the format of the name of the

MCMPerson, and skills that the MCMPerson has are modeled as subclasses of MetaData and as-

sociated with that Person using the Role-Object pattern, since (1) they are not necessary to define

the concept of an MCM attributes such as gender and birthDate Person, and (2) they can change

dynamically.

An MCMPerson can interact with an MCMOrganization directly or through his or her MCMPar-

tyRole(s). Behavior and characteristics that are specific to an individual are modeled using a com-

bination of classes for specific concepts augmented by the Role-Object pattern for each; this en-

sures that (1) the model is not dependent on one particular person, group, or organization, and (2)

it separates the characteristics and behavior of the individual and his or her responsibilities being

modeled from its responsibilities and functions. This provides a more accurate and extensible

model.

No attributes are currently defined for this class.

No operations are currently defined for this class.

No relationships are currently defined for this class.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 144

7.10 The InformationResource Class Hierarchy

Figure 23 shows the MCMInformationResource class hierarchy on the left, and some important

aggregations that the MCMInformationResource class participates in on the right. The following

subsections describe the classes in the MCMInformationResource class hierarchy in more detail.

7.10.1 MCMInformationResource Class Definition

This is an abstract class, and specializes MCMRootEntity. It defines information that is needed by

a management system to describe other information. However, that information is not an inherent

part of an MCMEntity; rather, that information is managed and controlled using another

MCMManagedEntity. For example, an IPAddress is an important concept in networking. How-

ever, an IPAddress is not directly managed; rather, an MCMManagedEntity that is responsible for

the lifecycle of the IPAddress (e.g., a DHCPServer) is responsible for its management. Therefore,

the concept of an IPAddress is represented as a type of MCMInformationResource, and is associ-

ated to an MCMManagedEntity that performs its management.

No attributes are currently defined for this class.

Figure 23. The MCMInformationResource Class Hierarchy

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 145

Table 52 defines following operations for this class:

Operation Name Description

getMCMNetworkAddress-

FreeList() : MCMNetwork-

Address[1..1]

This operation returns the set of all MCMNetworkAddress ob-
jects that are free-standing (i.e., they are not aggregated by
any subclass of an MCMEntity class). The getMCMInfoRe-

sourceList operation is used to retrieve the set of MCMNet-
workAddress objects that are aggregated by a given
MCMEntity object.

[D146] If no MCMNetworkAddress objects are found, then a

NULL MCMNetworkAddress object SHOULD be re-

turned.

setMCMNetworkAddress-

FreeList(in

newNetAddrFreeList :

MCMNetwork-

Address[1..1])

This operation defines a new set of MCMNetworkAddresses
to be created that are free-standing (i.e., they are not aggre-
gated by any subclass of MCMEntity). A single input parame-
ter, of type MCMNetworkAddress, defines an array of one or
more MCMNetworkAddress objects. The operation only de-
fines the MCMNetworkAddress objects; it does not associate
them with an MCMEntity. The setMCMInfoResourceList and
setMCMInfoResourcePartialList operations are used to associ-
ate an MCMNetworkAddress to a particular MCMEntity ob-
ject.

setMCMNetworkAddress-

FreePartialList(in newNet-

AddrFreeList : MCMNet-

workAddress[1..*])

This operation defines a new set of one or more free-standing
MCMNetworkAddress objects (i.e., they are not aggregated
by any subclass of MCMEntity) WITHOUT affecting any other
existing MCMNetworkAddress objects that are associated
with this MCMEntity object. This operation takes a single in-
put parameter, called newNetAddrFreeList, which is an array
of one or more MCMNetworkAddress objects. This operation
only defines the MCMNetworkAddress objects; it does not as-
sociate them with an MCMEntity. The setMCMInfoResource-
List and setMCMInfoResourcePartialList operations are used
to associate an MCMNetworkAddress to a particular
MCMEntity object.

delMCMNetworkAddress-

FreeList()

This operation is used to delete all free-standing MCMNet-
workAddress objects; use the delMCMInfoResourceList or
delMCMInfoResourcePartialList operations to delete the set
of MCMNetworkAddress objects that are aggregated by a
given MCMEntity object.

delMCMNetworkAddress-

FreePartialList (in newNet-

workAddressList :

This operation deletes ALL MCMNetworkAddress object in-
stances that are specified in its input parameter that are free-

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 146

MCMNetwork-

Address[1..*])

standing (i.e., not aggregated by any subclass of MCMEntity).
This operation takes a single input parameter, called newNet-
workAddressList, which is of type MCMNetworkAddress.
This operation is used to delete free-standing MCMNetwork-
Address objects; use the delMCMInfoResourceList or
delMCMInfoResourcePartialList operations to delete the set
of MCMNetworkAddress objects that are aggregated by a
given MCMEntity object.

getMCMContactFreeList() :

MCMContact[1..1]

This operation returns the set of all MCMContact objects that
are free-standing (i.e., they are not aggregated by any sub-
class of an MCMEntity class). The getMCMInfoResourceList
operation is used to retrieve the set of MCMContact objects
that are aggregated by a given MCMEntity object.

[D147] If no MCMContact objects are found, then a NULL

MCMContact object SHOULD be returned.

setMCMContactFreeList(in

newContactList :

MCMContact[1..*])

This operation defines a new set of MCMContact to be cre-
ated that are free-standing (i.e., they are not aggregated by
any subclass of MCMEntity). A single input parameter, of type
MCMContact, defines an array of one or more MCMContact
objects. The operation only defines the MCMContact objects;
it does not associate them with an MCMEntity. The
setMCMInfoResourceList and setMCMInfoResourcePartialList
operations are used to associate an MCMContact to a particu-
lar MCMEntity object.

setMCMContactFreePar-

tialList(in newNetAddr-

FreeList : MCMNetwork-

Address[1..*])

This operation defines a set of one or more free-standing
MCMContact objects WITHOUT affecting any other existing
MCMContact objects. This operation takes a single input pa-
rameter, called newNetAddrFreeList, which is an array of one
or more MCMContact objects. This operation only defines the
MCMContact objects; it does not associate them with an
MCMEntity. The setMCMInfoResourceList and setMCMIn-
foResourcePartialList operations are used to associate an
MCMContact to a particular MCMEntity object.

delMCMContactFreeList()

This operation is used to delete all free-standing MCMContact
objects; use the delMCMInfoResourceList or delMCMInfoRe-
sourcePartialList operations to delete the set of MCMContact
objects that are aggregated by a given MCMEntity object.

delMCMContactFreePar-

tialList (in newContactList :

MCMContact[1..*])

This operation deletes ALL MCMContact object instances that
are specified in its input parameter that are free-standing
(i.e., not aggregated by any subclass of MCMEntity). This op-
eration takes a single input parameter, called newContactList,
which is of type MCMContact.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 147

This operation is used to delete free-standing MCMContact
objects; use the delMCMInfoResourceList or delMCMInfoRe-
sourcePartialList operations to delete the set of MCMContact
objects that are aggregated by a given MCMEntity object.

Table 52. Operations of the MCMInformationResource Class

At this time, the MCMInformationResource class defines a single aggregation, called MCMIn-

foResourceHasMCMMetaData. The multiplicity of this aggregation is 0..1 – 0..*. This means that

this aggregation is optional (i.e., the “0” part of the 0..1 cardinality). If this aggregation is instan-

tiated (e.g., the “1” part of the 0..1 cardinality), then zero or more MCMMetaData objects can be

aggregated by this particular MCMInformationResource object. Note that the cardinality on the

part side (MCMMetaData) is 0..*; this enables an MCMInformationResource object to be defined

without having to define an associated MCMMetaData object for it to aggregate.

The semantics of this aggregation are defined by the MCMInfoResourceHasMCMMetaDataDetail

association class. This enables the management system to control which set of MCMMetaData

objects are aggregated by which set of MCMInformationResource objects.

Note that the Policy Pattern may be used to control which specific part objects (i.e.,

MCMMetaData) are associated with which specific aggregate (i.e., MCMInformationResource)

objects, respectively, for a given context. See Figure 3 for an exemplary illustration of the Policy

Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of imperative,

declarative, and intent policy rules.

The MCMInformationResource participates in a second aggregation, called MCMEnti-

tyHasMCMInfoResource; please see section 7.10.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 148

7.10.2 MCMNetworkAddress Class Definition

This is an abstract class, and specializes MCMInformationResource. It defines a network address,

which is a unique identifier for a node on a network. Such identifiers can be local, private, or public

(e.g., globally unique). A network node may have zero or more MCMNetworkAddresses (e.g., a

router may have multiple interfaces, and each interface may have a set of MCMNetwork-

Addresses). Examples of an MCMNetworkAddress include telephone numbers, IPv4 and IPv6

addresses, MAC addresses, and X.21 or X.25 addresses (in a circuit-switched data network).

No attributes are currently defined for this class.

No operations are currently defined for this class.

No relationships are currently defined for this class.

7.10.3 MCMContact Class Definition

This is a concrete class, and specializes MCMInformationResource. It represents the information

needed to communicate with a particular MCMParty or MCMPartyRole. Examples include tech-

nical and administrative contacts for Order information and technical implementation work (e.g.,

the network administrator of an MCMManagementDomain).

No attributes are currently defined for this class.

No operations are currently defined for this class.

At this time, this class participates in a single association, as shown in Figure 23. An MCMPar-

tyRoleDetail is an association class (see section 7.11.2.2) that defines a set of MCMPartyRoles

that are used by a given MCMParty. The MCMPartyRoleDetailHasMCMContact is an association

between the MCMPartyRoleDetail association class and the MCMContact class. This association

defines the set of MCMContacts that are related to this particular MCMPartyRoleDetail object

(i.e., the set of MCMParty objects that are playing a specific MCMPartyRole). For example, this

association can be used to define the contact information for a set of MCMParty objects that are

each playing a set of MCMPartyRoles; a common use is to define the contact information for

different types of MCMBuyer and MCMSeller objects.

The multiplicity of this association is 0..* – 0..*. This means that this association is optional (i.e.,

the “0” part of the 0..* cardinality). If this association is instantiated (e.g., the “0..* cardinality on

the MCMPartyHasMCMPartyRoleDetail is greater than 0), then zero or more MCMContact ob-

jects can be associated with this particular MCMPartyHasMCMPartyRoleDetail object. Note that

the cardinality on the part side (MCMContact) is 0..*; this enables an MCMPartyHasMCMPar-

tyRoleDetail object to be defined without having to define an associated MCMContact object for

it to aggregate.

The semantics of this aggregation are defined by the MCMPartyRoleDetailHasMCMContactDe-

tail association class. This enables the management system to control which set of MCMParty-

RoleDetail objects are associated to which set of MCMContact objects.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 149

Note that the Policy Pattern may be used to control which specific part objects (i.e.,

MCMMetaData) are associated with which specific aggregate (i.e., MCMInformationResource)

objects, respectively, for a given context. See Figure 3 for an exemplary illustration of the Policy

Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of imperative,

declarative, and intent policy rules.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 150

7.11 The MCMMetaData Class Hierarchy

Figure 24 shows a portion of the MCMMetaData class hierarchy. This figure will be used to de-

scribe the MCMMetaData class and the three aggregations that it participates in.

7.11.1 MCMMetaData Class Definition

This is an abstract class, and specializes MCMRootEntity. It defines prescriptive and/or descriptive

information about the object(s) to which it is attached. These descriptive and/or prescriptive char-

acteristics and behavior are not an inherent, distinguishing characteristic or behavior of that object

(otherwise, it would be an integral part of that object). Examples of prescriptive and descriptive

metadata are the definition of a time period during which specific types of operations are allowed,

and documentation about best current practices, respectively.

Table 53 defines following attributes for this class:

Attribute Name

Man-

datory? Description

mcmMetaDataEnableStatus :

MCMMetaDataEnableSta-

tus[0..1]

NO This is an optional enumeration that defines
whether the MCMEntity that this
MCMMetaData object refers to is enabled for
normal operation or not. The values that this
attribute can have are defined by the
MCMMetaDataEnableStatus enumeration, and
include:

Figure 24. The MCMMetaData Class Hierarchy, Part 1

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 151

 0: ERROR
 1: INIT
 2: Enabled (ok to use for all operations)
 3: Enabled for testing only
 4: Disabled (cannot be used)
 5: Unknown (e.g., cannot be contacted to
 ascertain state)

mcmMetaDataCreationTime :

TimeAndDate[1..1]

YES This is a TimeAndDate attribute; it contains a
datestamp and a timestamp. It defines the date
and time that the MCMMetaData was created.

[D148] This attribute SHOULD have a com-

plete and valid time and/or date.

[O63] The implementation MAY ensure that

the fields in this data type are set to an

appropriate default value.

mcmMetaDataDescriptiveText

: String[0..1]

NO This attribute is a free-form textual string, and
is used to contain prescriptive content about
the MCMEntity or MCMInformationResource to
which it is attached.

Table 53. Attributes of the MCMMetaData Class

Table 54 defines following operations for this class:

Operation Name Description

getMCMMetaDataEnable-

Status() : MCMMetaDataE-

nableStatus[1..1]

This method returns the value of the mcmMetaDataEnableS-
tatus attribute. The output is an Enumeration of type
MCMMetaDataEnableStatus.

setMCMMetaDataEnable-

Status (in newStatus :

MCMMetaDataEnableSta-

tus1..1])

This method defines the value of the mcmMetaDataEnableS-
tatus attribute. A single input parameter, of type MCMMetaD-
ataEnableStatus, is supplied; the value is set to one of its lit-
eral values.

getMCMMetaDataCrea-

tionTime() : Time-

AndDate[1..1]

This method returns the value of the mcmMetaDataCreation-
Time attribute.

[D149] This attribute SHOULD have a complete and valid time

and/or date.

[O64] The implementation MAY ensure that the fields in this

data type are set to an appropriate default value.

setMCMMetaDataCrea-

tionTime(in newTime :

TimeAndDate[1..1])

This method defines the value of the mcmMetaDataCreation-
Time attribute. A single input parameter, of type Time-
AndDate, is supplied.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 152

getMCMMetaDataDescrip-

tiveText() : String[1..1]

This method returns the value of the mcmMetaDataDescrip-
tiveText attribute.

setMCMMetaDataDescrip-

tiveText (in newStatus :

String[1..1])

This method defines the value of the mcmMetaDataDescrip-
tiveText attribute. A single input parameter, of type String, is
supplied.

Table 54. Operations of the MCMMetaData Class

The MCMMetaData class participates in three aggregations: MCMEntityHasMCMMetaData,

MCMInfoResourceHasMCMMetaData, and MCMHasMCMMetaDataDecorator. See sections

7.4.1, 7.10, and 7.11.6, respectively.

Figure 25 shows a portion of the MCMMetaData class hierarchy. The following subsections will

use this figure to describe the classes in the MCMMetaData class hierarchy in more detail.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 153

7.11.2 MCMRole Class Hierarchy

This section specifies the class definition of the MCMRole class and its subclasses.

7.11.2.1 MCMRole Class Definition

This is an abstract class, and specializes MCMMetadata. It represents a set of characteristics and

behaviors (also referred to as responsibilities) that an object takes on in a particular context. This

enables an object to adapt to the needs of different clients through transparently attached role ob-

jects (as opposed to having to alter the inherent nature of the object itself). The Role Object pattern

models context-specific views of an object as separate role objects that are dynamically attached

to and removed from the core object to which the MCMRole objects are attached.

An important concept when using MCMRoles is that of a role combination. A role combination

defines the set of MCMRoles that are attached to a given object. Data mining mechanisms can be

used to optimize the number of roles, permission assignments, and other factors. This subject is

beyond the scope of this document; however, this is why the getRoleCombination method is pro-

vided by this class.

Table 55 defines the following attributes for this class:

Figure 25. MCMMetaData Class Hierarchy, Part 2

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 154

Attribute Name Mandatory? Description

mcmRoleName :

String[1..1]

YES This is a string attribute. It contains the name of this
Role object. The mcmRoleName attribute is different
from the mcmCommonName attribute, because the
former defines a user-friendly name that this in-
stance is, while the latter defines a name by which
this object is known.

[R76] The mcmRoleName attribute MUST NOT be

used as a naming attribute (i.e., to uniquely

identify an instance of this object).

[R77] The mcmRoleName attribute MUST NOT be

empty or Null.

Table 55. Attributes of the MCMRole Class

Table 56 defines following operations for this class:

Attribute Name Description

getMCMRoleName :

String[1..1]

This method returns the name of this MCMRole object. The
mcmRoleName attribute is different from the mcmCommonName
attribute, because the former defines a user-friendly name that this
instance is, while the latter defines a name by which this object is
known.

[R78] The mcmRoleName attribute MUST NOT be used as a nam-

ing attribute (i.e., to uniquely identify an instance of this ob-

ject).

[R79] The mcmRoleName attribute MUST NOT be empty or Null

string.

setMCMRoleName

(in newRoleName :

String[1..1])

This method returns the name of this MCMRole object. The
mcmRoleName attribute is different from the mcmCommonName
attribute, because the former defines a user-friendly name that this
instance is, while the latter defines a name by which this object is
known.

[R80] The mcmRoleName attribute MUST NOT be used as a nam-

ing attribute (i.e., to uniquely identify an instance of this ob-

ject).

[R81] The mcmRoleName attribute MUST NOT be empty or Null

string.

Table 56. Operations of the MCMRole Class

At this time, no relationships are defined for this class.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 155

7.11.2.2 MCMPartyRole Class Definition

This is an abstract class, and specializes MCMRole. It represents a set of unique behaviors played

by an MCMParty in a given context.

[D150] Implementers SHOULD use the Role-Object pattern [3] to implement

MCMRoles.

At this time, no attributes are defined for this class.

At this time, no operations are defined for this class. Note that the getMCMPartyRoleList,

setMCMPartyRoleList, setMCMPartyRolePartialList, delMCMPartyRoleList, and delMCMPar-

tyRolePartialList operations are defined for an MCMParty; see section 7.11.2.2.

The MCMPartyRoleDetailHasMCMContact is an association between the MCMPartyRoleDetail

association class and the MCMContact class. This association defines the set of MCMContacts

that are related to this particular MCMPartyRoleDetail object (i.e., the set of MCMParty objects

that are playing a specific MCMPartyRole). For example, this association can be used to define

the contact information for a set of MCMParty objects that are each playing a set of MCMPartyR-

oles; a common use is to define the contact information for different types of MCMBuyer and

MCMSeller objects.

The multiplicity of this association is 0..* – 0..*. This means that this association is optional (i.e.,

the “0” part of the 0..* cardinality). If this association is instantiated (e.g., the “0..* cardinality on

the MCMPartyHasMCMPartyRoleDetail is greater than 0), then zero or more MCMContact ob-

jects can be associated with this particular MCMPartyHasMCMPartyRoleDetail object. Note that

the cardinality on the part side (MCMContact) is 0..*; this enables an MCMPartyHasMCMPar-

tyRoleDetail object to be defined without having to define an associated MCMContact object for

it to aggregate.

The semantics of this aggregation are defined by the MCMPartyRoleDetailHasMCMContactDe-

tail association class. This enables the management system to control which set of MCMParty-

RoleDetail objects are associated to which set of MCMContact objects.

Note that the Policy Pattern may be used to control which specific part objects (i.e.,

MCMMetaData) are associated with which specific aggregate (i.e., MCMInformationResource)

objects, respectively, for a given context. See Figure 3 for an exemplary illustration of the Policy

Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of imperative,

declarative, and intent policy rules.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 156

7.11.2.3 MCMCustomer Class Definition

MCMCustomer is a concrete class, and specializes MCMPartyRole. It represents a particular type

of MCMPartyRole that defines a set of people and/or organizations that buy, manage, or use

MCMProducts from an MCMServiceProvider. The MCMCustomer is financially responsible for

purchasing an MCMProduct. The MCMCustomer is the MCMPartyRole that is purchasing, man-

aging, and/or using Services from an MCMServiceProvider. This definition is based on the defi-

nition from [15].

Table 57 defines the attributes of the MCMCustomer class.

Attribute Name Manda-

tory?

Description

mcmCustomerStatus :

MCMCustomer-

Status[1..1]

YES This attribute defines the current standing of a

customer. Values are defined by the MCMCus-

tomerStatus enumeration, and include the fol-

lowing literals:

 0: ERROR

 1: INIT

 2: Active

 3: Restricted (active with unpaid bills)

 4: Inactive

 5: Prospective

mcmCustomerRank : Inte-

ger[0..1]

NO This is a non-negative integer, and defines the

current business importance of this Customer. A

value of 0 means unimportant, and higher posi-

tive values means higher importance.

Table 57. Attributes of the MCMCustomer Class

Table 58 defines following operations for this class:

Attribute Name Description

getMCMCustomer-

Status () : MCMCus-

tomerStatus[1..1]

This method returns the value of the mcmCustomerStatus attrib-
ute. The values of this attribute are defined in theMCMCustomer-
Status enumeration.

setMCMCustomer-

Status (in newStatus:

MCMCustomer-

Status[1..1])

This method defines the value for the mcmCustomerStatus attrib-
ute. Valid values for this attribute are defined in the theMCMCus-
tomerStatus enumeration.

getMCMCustomer-

Rank () : Inte-

ger[1..1]

This method returns the value of the mcmCustomerRank attribute.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 157

setMCMCustomer-

Rank (in newRank :

Integer[1..1])

This method defines the value for the mcmCustomerRank attribute.

Table 58. Operations of the MCMCustomer Class

At this time, no relationships are defined for this class.

7.11.2.4 MCMServiceProvider Class Definition

MCMServiceProvider is a concrete class, and specializes MCMPartyRole. It represents a particu-

lar type of MCMPartyRole that provides MCMProducts. This specifically includes MCMServices.

This definition is based on the definition from [1].

At this time, no attributes are defined for this class. Most attributes will likely be realized using

relationships and/or methods. For example, a query to an instance of the MCMServiceProvider

class to provide its set of different contact information will be done by using a class method, since

each contact will also use information from a subclass of MCMContact (see section 7.10.3).

At this time, no operations are defined for this class.

At this time, no relationships are defined for this class.

7.11.2.5 MCMAccessProvider Class Definition

MCMAccessProvider is a concrete class, and specializes MCMPartyRole. It represents a particular

type of MCMPartyRole that enables MCMPartyRoles (typically MCMCustomers) to gain entrance

to a network (e.g., the Internet), by using an MCMProduct. This specifically includes

MCMServices.

At this time, no attributes are defined for the MCMAccessProvider class. Most attributes will likely

be realized using relationships and/or methods. For example, a query to an instance of the

MCMAccessProvider class to provide its set of different contact information will be done by using

a class method, since each contact will also use information from a subclass of MCMContact (see

section 7.10.3).

At this time, no operations are defined for this class.

At this time, no relationships are defined for this class.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 158

7.11.2.6 MCMPartner Class Definition

MCMPartner is a concrete class, and specializes MCMPartyRole. It represents a particular type of

MCMPartyRole that provides MCMProducts and MCMServices to the MCMServiceProvider in

order to instantiate and manage MCMService elements, such as MCMServiceComponents, exter-

nal to the Service Provider’s Domain. This definition is based on the definition from [1].

At this time, no attributes are defined for the MCMPartner class. Most attributes will likely be

realized using relationships and/or methods. For example, a query to an instance of the MCMPart-

ner class to provide its set of different contact information will be done by using a class method,

since each contact will also use information from a subclass of MCMContact (see section 7.10.3).

At this time, no operations are defined for this class.

At this time, no relationships are defined for this class.

7.11.3 MCMPolicyRole Class Definition

This class is defined in the Policy Driven Orchestration specification. It is used to define the de-

scriptive and/or prescriptive characteristics and behavior of a given MCMPolicyRole object.

7.11.4 MCMPolicyMetaData Class Definition

This is an abstract class, and specializes MCMMetaData. It is used to define MetaData for all types

of Policy Driven Orchestration Policies (e.g., imperative, declarative, and intent).

7.11.5 MCMGeoSpatialMetaData Class Definition

This is an abstract class, and specializes MCMMetaData. It defines metadata that are applicable to

objects that have an explicit or implicit geographic meaning (e.g., they are associated with a par-

ticular location, typically on the surface of the Earth). This class will eventually be harmonized

with all or some of the information in [14].

Table 59 defines the attributes of this class.

Attribute Name Manda-

tory?

Description

mcmIsAbsoluteLoca-

tion : Boolean[0..1]
NO

This is a Boolean attribute. If its value is TRUE, then this
MCMLocation object instance provides an absolute
geo-location. Otherwise, it provides an estimated geo-
location.

mcmIsPlannedLoca-

tion : Boolean[0..1]
NO

This is a Boolean attribute. If the value of this attribute
is TRUE, then an MCMUnManagedEntity is planned to
be located here. Otherwise, this is the current location
of an MCMLocation object.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 159

mcmGeoMethod :

MCMGeoMethod[1..1]
YES

This is an enumerated string attribute, and defines the
type of geolocation method used. The values are liter-
als in the MCMGeoMethod enumeration. Values in-
clude:
 - 0: ERROR
 - 1: INIT
 - 2: GPS
 - 3: Differential GPS
 - 4: Augmented GNSS
 - 5: Enhanced GNSS
 - 6: Non-GPS Satellite Navigation
 - 7: Cellular Navigation
 - 8: WiFi Positioning
 - 9: Other Positioning System

Table 59. Attributes of the MCMGeoSpatialMetaData Class

Table 60 defines the operations of this class.

Attribute Name Description

getMCMIsAbsoluteLo-

cation() : Boolean[1..1])

This method returns the value of the mcmIsAbsoluteLocation at-
tribute.

[D151] If the value of the mcmIsAbsoluteLocation attribute is

empty or NULL, then the implementation SHOULD re-

turn FALSE.

[D152] The default value for this attribute SHOULD be FALSE.

setMCMIsAbsoluteLo-

cation(in isAbsolute :

Boolean[1..1])

This method defines the value for the mcmIsAbsoluteLocation
attribute.

getMCMIsPlannedLoca-

tion() : Boolean[1..1])

This method returns the value of the mcmIsPlannedLocation at-
tribute.

[D153] If the value of the mcmIsAbsoluteLocation attribute is

empty or NULL, then the implementation SHOULD re-

turn FALSE.

[D154] The default value for this attribute SHOULD be FALSE.

setMCMIsPlannedLoca-

tion(in isPlanned : Bool-

ean[1..1])

This method defines the value for the mcmIsPlannedLocation at-
tribute.

getMCMGeoMethod() :

MCMGeoMethod[1..1]

This method returns the value of the mcmGeoMethod attribute.
Valid values for this attribute are defined in the MCMGe-
oMethod enumeration.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 160

setMCMGeoMethod(in

newGeoMethod :

MCMGeoMethod[1..1])

This method defines the value for the mcmIsAbsoluteLocation
attribute. Valid values for this attribute are defined in the
MCMGeoMethod enumeration.

Table 60. Operations of the MCMGeoSpatialMetaData Class

At this time, no relationships are defined for this class.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 161

7.11.6 MCMMetaDataDecorator Class Definition

This is an abstract class, and specializes MCMMetaData. It defines the decorator pattern for use

with MCMMetaData. This enables all or part of one or more concrete subclasses of MCMMeta-

DataDecorator to “wrap” another concrete subclass of MCMMetaData.

At this time, no attributes are defined for the MCMMetaDataDecorator class.

Table 61 defines the operations of this class.

Attribute Name Description

getMCMMetaDecora-

torList() : MCMMetaDa-

taDecorator[1..*]

This operation returns the set of MCMMetaDataDecorator
objects that are decorating this MCMMetaData object. There
are no input parameters.

[D155] If this MCMMetaData object is not decorated by any

MCMMetaDataDecorator objects, then a NULL

MCMMetaDataDecorator object SHOULD be re-

turned.

setMCMMetaDecora-

torList (in newDecora-

torList : MCMMetaDa-

taDecorator[1..*])

This operation defines the set of MCMMetaDataDecorator
objects that will decorate this MCMMetaData object. This op-
eration takes a single input parameter, called newDecora-
torList, which is of type MCMMetaDataDecorator. This oper-
ation creates a set of aggregations between this particular
MCMMetaData object and the set of MCMMetaDataDecora-
tor objects identified in the input parameter. Note that this
operation first deletes any existing MCMMetaDataDecorator
objects (and their aggregations and association classes) that
decorate this MCMMetaData object, and then instantiates a
new set of MCMServiceComponent objects; in doing so, each
MCMMetaDataDecorator object is attached to this particular
MCMMetaData object by first, creating an instance of the
MCMHasMetaDataDecorator aggregation, and second, realiz-
ing that aggregation instance as an association class.

[D156] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMHasMetaDa-

taDecoratorDetail association class).

setMCMMetaDecora-

torPartialList (in newDeco-

ratorList : MCMMetaDa-

taDecorator[1..*])

This operation defines a set of one or more MCMMetaDa-
taDecorator objects that will decorate this MCMMetaData
object WITHOUT affecting any other existing MCMMetaDa-
taDecorator objects that are decorating this MCMMetaData
object. This operation takes a single input parameter, called
newDecoratorList, which is an array of one or more
MCMMetaDataDecorator objects. This operation creates a

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 162

set of aggregations between this particular MCMMetaData
object and the set of MCMMetaDataDecorator objects identi-
fied in the input parameter.

[D157] Each created aggregation SHOULD have an associa-

tion class (i.e., an instance of the MCMHasMetaDa-

taDecoratorDetail association class).

delMCMMetaDecora-

torList()

This operation deletes ALL MCMMetaDataDecorator object
instances that are decorating this MCMMetaData object. This
operation first removes the association class, and second, re-
moves the aggregation, between this MCMMetaData object
and each MCMMetaDataDecorator object that is decorating
this MCMMetaData object. This operation has no input pa-
rameters. This operation does not delete any of the
MCMMetaDataDecorator objects; it simply disconnects them
from the MCMMetaData that they were decorating.

delMCMMetaDecora-

torPartialList (in

newDecoratorList :

MCMMetaDataDecorator

[1..*])

This operation deletes a set of MCMMetaDataDecorator ob-
jects that are decorating this particular MCMMetaData ob-
ject. This operation takes a single input parameter, called
newDecoratorList, which is an array of one or more
MCMMetaDataDecorator objects. This operation first re-
moves the association class and second, removes the aggre-
gation, between each MCMMetaDataDecorator object speci-
fied in the input parameter and this MCMMetaData object.
Note that all other aggregations between this MCMMetaData
object and other MCMMetaDataDecorator objects that are
not specified in the input parameter are NOT affected.

Table 61. Operations of the MCMMetaDataDecorator Class

At this time, a single aggregation is defined for MCMMetaDataDecorator. This aggregation is

named MCMHasMetaDataDecorator, and defines the set of concrete subclasses of MCMMeta-

DataDecorator that wrap (or decorate) a concrete subclass of MCMMetaData. The multiplicity of

this aggregation is 0..1 – 0..*. This means that this aggregation is optional (i.e., the “0” part of the

0..1 cardinality). If this aggregation is instantiated (e.g., the “1” part of the 0..1 cardinality), then

zero or more concrete subclasses of MCMMetaDataDecorator can decorate (i.e., “wrap”) this par-

ticular concrete subclass of MCMMetaData. Note that the cardinality on the part side

(MCMMetaData) is 0..*; this enables an MCMMetaData object to be defined without having to

define an associated MCMMetaDataDecorator object.

The semantics of this aggregation are defined by the MCMHasMetaDataDecoratorDetail associa-

tion class. This enables the management system to control which set of concrete subclasses of

MCMMetaDataDecorator wrap this particular MCMMetaData. The Policy Pattern may be used to

control which specific MCMMetaDataDecorator objects wrap a given MCMMetaData for a given

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 163

context. See Table 3 for an exemplary illustration of the Policy Pattern. Note that MCMPoli-

cyStructure is an abstract class that is the superclass of imperative, declarative, and intent policy

rules.

7.11.6.1 MCMCapability Class Definition

This is an abstract class, and specializes MCMMetaDataDecorator. It represents a set of features

that are available to be used from an MCMEntity. These features may include all, or a subset, of

the available features of an MCMEntity. These features may, but do not have to, be used.

At this time, no attributes are defined for the MCMCapability class. Most attributes will likely be

realized using relationships and/or methods. For example, the set of mandatory, recommended,

and optional capabilities of a given MCMManagedEntity can be gathered and sorted by using an

appropriate method.

At this time, no relationships are defined for this class.

At this time, no relationships are defined for this class.

7.11.6.2 MCMNetworkFunction

This section describes the concept of a Network Function. This was originally defined by ETSI

NFV, but has been modified to make this concept both more flexible and generic as well as more

robust (e.g., in NFV, it is not explicitly modeled).

7.11.6.2.1 Background

This class is derived from the concept of a Network Function as defined in ETSI NFV [17]:

Network Function (NF): functional block within a network infrastructure that has well-defined

external interfaces and well-defined functional behavior.

In control theory, a system is made up of functional blocks. A functional block describes a part, or

module, of a system. Each functional block defines a collection of structural and/or behavioral

features of a module. A transfer function defines the set of outputs for a functional block given a

set of inputs and a state. Originally, NFV defined a NetworkFunction as a transfer function. This

is no longer true.

7.11.6.2.2 Rationale for Changing the Definition of a NetworkFunction

There are three main reasons for not using the ETSI definition of a NetworkFunction:

o The ETSI NFV information model does not define a superclass for a NetworkFunc-

tion

o In ETSI NFV, the concept of a NetworkFunction is limited to a small number of use

cases; we want a NetworkFunction to behave as defined in [17], and be used to repre-

sent the behavior defined by the combination of a state and a given set of inputs

o The ETSI NFV information model does not specifically model a NetworkFunction

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 164

Hence, we have decided to create a new MCM class to better model what a NetworkFunction is.

Accordingly, the name of this class is prefixed with “MCMMEF”, to denote that this is the MEF’s

interpretation of what a NetworkFunction should be.

Note also that, due to this definition, MCMMEFNetworkFunctions may be attached to any

MCMManagedEntity. This is not true in NFV.

Finally, we have modeled an MCMMEFNetworkFunction as a type of MCMMetaData. This is

because:

o A NetworkFunction is not required to be used

o A NetworkFunction may change its behavior, adding or removing capabilities dy-

namically at runtime

Therefore, we have modeled an MCMMEFNetworkFunction as a subclass of MCMCapability

(since it represents the capabilities of an MCMEntity), which is in turn a subclass of MCMMetaD-

ataDecorator (since it can be dynamically changed at runtime).

7.11.6.2.3 MCMMEFNetworkFunction Class Definition

This is a concrete class, and specializes MCMCapability. It represents the features and behavior

of an MCMManagedEntity that may be used for a given set of external interfaces while in a par-

ticular state. It may specify attributes and methods, as well as define nested MCMMEFNetwork-

Functions. It may also enumerate the actors that use it.

At this time, no attributes are defined for the MCMMEFNetworkFunction class.

At this time, no operations are defined for the MCMMEFNetworkFunction class.

At this time, no relationships are defined for the MCMMEFNetworkFunction class.

7.11.6.3 MCMMEFDescriptor

This section describes the concept of a Descriptor. This was originally defined by ETSI NFV, but

has been modified to make this concept both more flexible and generic as well as more robust

(e.g., in NFV, there are many different types of Descriptors, but each is modeled as an individual

object and does not have a superclass).

7.11.6.3.1 Background

A Descriptor is loosely described as a “template”, as in this example from [17]:

network service descriptor: template that describes the deployment of a Network Service in-

cluding service topology (constituent VNFs and the relationships between them, Virtual Links,

VNF Forwarding Graphs) as well as Network Service characteristics such as SLAs and any

other artefacts necessary for the Network Service on-boarding and lifecycle management of

its instances

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 165

There are a large number of descriptors defined in ETSI NFV.

7.11.6.3.2 Rationale for Changing the Defintiion of a Descriptor

First, there is a large amount of commonality, in both function and purpose, among the many

different types of Descriptors used in ETSI NFV. Unfortunately, the NFV information model treats

them as individual objects with no common inheritance. This needs to be fixed to follow accepted

object-oriented practice, and to make the models more robust and easier to maintain.

Second, many NFV descriptors contain other NFV descriptors – this is another reason to enforce

inheritance and represent descriptors using a class hierarchy. In addition, the use of various pat-

terns, such as the composite pattern [2][4], would significantly simplify the resulting design as

well as improve its robustness and decrease its fragility.

Third, some types of NFV descriptors contain instance-specific information (e.g., link data) that is

fragile and will change during normal operations (e.g., a VM migration). In order to be compatible

with this approach, the MCM models descriptors as a type of metadata that can be dynamically

attached and detached using the decorator pattern.

Fourth, many types of NFV descriptors combine metadata with other types of data. The MCM

separates these two types of data into separate class hierarchies (e.g., MCMEntity vs

MCMMetaData), but enables them to be associated with each other. This provides a better and

more consistent implementation approach.

Finally, descriptors are used inconsistently in NFV. While NFV is basically a resource-oriented

model, not all resources have descriptors. In addition, descriptors should be able to be used for

other entities, such as Services. This is the prime motivation for subclassing MCMMEFDescriptor

from MCMCapability (which is a type of MCMMetaDataDecorator – that way, a Descriptor can

change dynamically to suit the needs of what it is describing).

7.11.6.3.3 MCMMEFDescriptor Class Definition

An MCMMEFDescriptor is a set of related metadata that can be applied to describe and/or pre-

scribe the characteristics and behavior of an MCMManagedEntity. Note that this class can be used

in conjunction with an appropriate subclass of an MCMDefinition class to provide a completely

generic mechanism for defining the salient characteristics and behavior of a Descriptor. In addi-

tion, the flexibility of the MCM enables the application developer to tailor application-specific

definitions of Descriptors to Products, Services, and/or Resources. For example, the MCMMEF-

Descriptor class can be attached to an MCMService class, which is defined by a set of MCMDef-

initions.

There are several significant problems with the NFV definition of a descriptor. First, it is restricted

to the deployment view, yet is often used as part of the design process. Second, it combines

metadata and non-metadata information. For example, the definition of a VNF Descriptor (VNFD)

in NFV is a “configuration template that describes a VNF in terms of its deployment and opera-

tional behavior, and is used in the process of VNF on-boarding and managing the lifecycle of a

VNF instance”. Hence, the name of this class is prefixed with “MCMMEF”, to denote that this is

the MEF’s interpretation of what a Descriptor should be.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 166

At this time, no attributes are defined for the MCMMEFDescriptor class.

At this time, no operations are defined for the MCMMEFDescriptor class.

At this time, no relationships are defined for the MCMMEFDescriptor class.

7.11.6.4 MCMVersion Class Definition

This is a concrete class that specializes MCMMetaDataDecorator. It defines versioning infor-

mation, in the form of metadata, that can be added to an MCMManagedEntity. This enables all or

part of a standardized description and/or specification of version information for a given

MCMManagedEntity to be easily changed at runtime by wrapping an object instance of the

MCMManagedEntity class (or its subclass) with all or part of this object.

Version information is defined in a generic format based on the Semantic Versioning 2.0.0 Spec-

ification [16] as follows:

 <major>.<minor>.<patch>[<pre-release>][<build-metadata>]

where the first three components (major, minor, and patch) MUST be present, and the latter two

components (pre-release and build-metadata) MAY be present. A version number MUST take the

form <major>.<minor>.<patch>, where <major>, <minor>, and <patch> are each non-negative

integers that MUST NOT contain leading zeros.

In addition, the value of each of these three elements MUST increase numerically. In this ap-

proach:

o mcmVersionMajor denotes a new release; this number MUST be incremented when

either changes are introduced that are not backwards-compatible, and/or new func-

tionality not previously present is introduced

o mcmVersionMinor denotes a minor release; this number MUST be incremented when

new features and/or bug fixes to a major release that are backwards-compatible are

introduced, and/or if any features are marked as deprecated

o mcmVersionPatch denotes a version that consists ONLY of bug fixes, and MUST be

incremented when these bug fixes are NOT backwards-compatible

When multiple versions exist, the following rules define their precedence:

1) Precedence MUST be calculated by separating the version into major, minor, patch, and

pre-release identifiers, in that order. Note that build-metadata is NOT used to calculated

precedence.

2) Precedence is determined by the first difference when comparing each of these identifiers,

from left to right, as follows:

a) Major, minor, and patch versions are always compared numerically (e.g.,

1.0.0 < 2.0.0 < 2.1.0 < 2.1.1)

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 167

b) When major, minor, and patch are equal, a pre-release version has LOWER precedence

than a normal version (e.g., 1.0.0-alpha < 1.0.0)

c) Precedence for two pre-release versions with the same major, minor, and patch version

MUST be determined by comparing each dot separated identifier from left to right until

a difference is found as follows:

i) identifiers consisting only of digits are compared numerically and identifiers with

letters and/or hyphens are compared lexically in ASCII sort order

ii) Numeric identifiers always have lower precedence than non-numeric identifiers

iii) A larger set of pre-release fields has a higher precedence than a smaller set, if all of

the preceding identifiers are equal

Example:

 1.0.0-alpha < 1.0.0-alpha.1 < 1.0.0-alpha-beta < 1.0.0-beta < 1.0.0-beta.2 < 1.0.0-rc.1 < 1.0.0.

Table 62 defines the attributes of the MCMVersion class.

Attribute Name

Manda-

tory? Description

mcmVersionMajor :

String[1..1]
YES

This is a mandatory string attribute, and contains a
string representation of an integer that is greater than
or equal to zero. It indicates that a significant increase
in functionality is present in this version. Improve-
ments to each starting initial version, before they are
released to the public, are denoted by incrementing
the minor and patch version numbers.

[O65] A major version MAY indicate that this version

has changes that are NOT backwards-compati-

ble; this MAY be denoted using attached

MCMMetaData and/or using the mcmVer-

sionBuildMetaData class attribute.

[R82] The special string "0.1.0" is for initial develop-

ment that MUST NOT be considered stable.

[R83] The major version X (i.e., X.y.z, where X > 0)

MUST be incremented if any backwards in-

compatible changes are introduced.

[O66] A major version MAY include minor and patch

level changes.

[R84] The minor and patch version numbers MUST

be reset to 0 when the major version number is

incremented.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 168

mcmVersionMinor :

String[1..1]
YES

This is a mandatory string attribute, and contains a
string representation of an integer that is greater than
or equal to zero. A minor version indicates that this re-
lease contains a set of features and/or bug fixes that
are backwards-compatible.

[R85] A minor version indicates that this release con-

tains a set of features and/or bug fixes that

MUST be backwards-compatible.

[R86] The minor version Y (i.e., x.Y.z, where x > 0)

MUST be incremented if new, backwards-com-

patible changes are introduced.

[R87] The minor version MUST be incremented if

any features are marked as deprecated.

[O67] The minor version MAY be incremented if new

functionality or improvements are introduced.

[O68] The minor version MAY include patch level

changes.

[R88] The patch version number MUST be reset to 0

when the minor version number is incremented.

mcmVersionPatch :

String[1..1]
YES

This is a mandatory string attribute, and contains a
string representation of an integer that is greater than
or equal to zero. A patch version indicates that this
version ONLY contain bug fixes. A bug fix is defined as
an internal change that fixes incorrect behavior.

[R89] A patch version indicates that this version

MUST ONLY contain bug fixes.

[R90] The patch version Z (i.e., x.y.Z, where x > 0)

MUST be incremented if new, backwards-com-

patible changes are introduced.

mcmVersionPreRe-

lease : String[0..1]
NO

This is an optional string attribute, and contains a
string defining the pre-release version. A pre-release
version is denoted by appending a hyphen and a se-
ries of dot-separated identifiers immediately following
the patch version. A pre-release version indicates that
the version is unstable and might not satisfy the in-
tended compatibility requirements as denoted by its
associated normal version. Pre-release versions have a
lower precedence than the associated normal version.
Examples include: 1.0.0-alpha, 1.0.0-alpha.1, 1.0.0-
0.3.7, and 1.0.0-x.7.z.92.

[R91] Identifiers MUST comprise only ASCII alpha-

numerics and a hyphen.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 169

[R92] Identifiers MUST NOT be empty.

[R93] Numeric identifiers MUST NOT include lead-

ing zeroes.

mcmVer-

sionBuildMetaData :

String[0..1]

NO

This is an optional string attribute, and contains a
string defining the build metadata. Build metadata is
denoted by appending a plus sign and a series of dot-
separated identifiers immediately following the patch
or pre-release version. Examples include: 1.0.0.-al-
pha+1, 1.0.0+20130313144700, and
1.0.0-beta+exp.sha.5114f85.

[R94] Identifiers MUST be made up of only ASCII

alphanumerics and a hyphen.

[R95] Identifiers MUST NOT be empty.

[D158] Build metadata SHOULD be ignored when de-

termining version precedence.

Table 62. Attributes of the MCMVersion Class

Table 63 defines the following operations for this class.

Operation Name Description

getMCMVersionMa-

jor() : String[1..1]

This method returns the value of the mcmVersionMajor attribute.
This value is a string representation of an integer that is greater
than or equal to zero. It indicates that a significant increase in func-
tionality is present in this version. Improvements to each starting
initial version, before they are released to the public, are denoted
by incrementing the minor and patch version numbers.

[R96] The value of this attribute MUST NOT be a NULL or an

empty string value.

setMCMVersionMa-

jor(in newVer-

sionMajor :

String[1..1])

This method defines the value of the mcmVersionMajor attribute.
A single input parameter, of type String, is provided. This value is a
string representation of an integer that is greater than or equal to
zero. It indicates that a significant increase in functionality is pre-
sent in this version. Improvements to each starting initial version,
before they are released to the public, are denoted by increment-
ing the minor and patch version numbers.

[R97] The value of this attribute MUST NOT be a NULL or an

empty string value.

getMCMVersionMi-

nor() : String[1..1]

This method returns the value of the mcmVersionMinor attribute.
This value a string representation of an integer that is greater than

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 170

or equal to zero. A minor version indicates that this release con-
tains a set of features and/or bug fixes that are backwards-compat-
ible.

[R98] The value of this attribute MUST NOT be a NULL or an

empty string value.

setMCMVersionMi-

nor(in newVer-

sionMinor :

String[1..1])

This method defines the value of the mcmVersionMinor attribute.
A single input parameter, of type String, is provided. This value is a
string representation of an integer that is greater than or equal to
zero. A minor version indicates that this release contains a set of
features and/or bug fixes that are backwards-compatible.

[R99] The value of this attribute MUST NOT be a NULL or an

empty string value.

getMCMVersion-

Patch() : String[1..1]

This method defines the value of the mcmVersionPatch attribute.
This value is a string representation of an integer that is greater
than or equal to zero. A patch version indicates that this version
ONLY contain bug fixes. A bug fix is defined as an internal change
that fixes incorrect behavior.

[R100] The value of this attribute MUST NOT be a NULL or an

empty string value.

setMCMVersion-

Patch(in newVersion-

Patch : String[1..1])

This method defines the value of the mcmVersionPatch attribute. A
single input parameter, of type String, is provided. This value is a
string representation of an integer that is greater than or equal to
zero. A patch version indicates that this version ONLY contain bug
fixes. A bug fix is defined as an internal change that fixes incorrect
behavior.

[R101] The value of this attribute MUST NOT be a NULL or an

empty string value.

getMCMVersionPre-

Release() :

String[1..1]

This method defines the value of the mcmVersionPreRelease attrib-
ute. This value is a string defining the pre-release version. A pre-re-
lease version is denoted by appending a hyphen and a series of dot-
separated identifiers immediately following the patch version. A
pre-release version indicates that the version is unstable and might
not satisfy the intended compatibility requirements as denoted by
its associated normal version. Pre-release versions have a lower
precedence than the associated normal version. Examples include:
1.0.0-alpha, 1.0.0-alpha.1, 1.0.0-0.3.7, and 1.0.0-x.7.z.92.

[R102] Identifiers MUST NOT be empty.

[R103] The value of this attribute MUST NOT be a NULL or an

empty string value.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 171

setMCMVersionPre-

Release(in newVer-

sionPreRelease :

String[1..1])

This method defines the value of the mcmVersionPreRelease attrib-
ute. A single input parameter, of type String, is provided. This value
is a string defining the pre-release version. A pre-release version is
denoted by appending a hyphen and a series of dot-separated iden-
tifiers immediately following the patch version. A pre-release ver-
sion indicates that the version is unstable and might not satisfy the
intended compatibility requirements as denoted by its associated
normal version. Pre-release versions have a lower precedence than
the associated normal version. Examples include: 1.0.0-alpha, 1.0.0-
alpha.1, 1.0.0-0.3.7, and 1.0.0-x.7.z.92.

[R104] Identifiers MUST NOT be empty.

[R105] The value of this attribute MUST NOT be a NULL or an

empty string value.

getMCMVer-

sionBuildMetaData :

String[1..1]

This method defines the value of the mcmVersionBuildMetaData
attribute. This value is a string defining the build metadata. Build
metadata is denoted by appending a plus sign and a series of dot-
separated identifiers immediately following the patch or pre-re-
lease version. Examples include: 1.0.0.-alpha+1,
1.0.0+20130313144700, and
1.0.0-beta+exp.sha.5114f85.

[R106] Identifiers MUST be made up of only ASCII alphanumerics

and a hyphen.

[R107] Identifiers MUST NOT be empty.

[R108] The value of this attribute MUST NOT be a NULL or an

empty string value.

setMCMVer-

sionBuildMetaData(in

newVersionBuild :

String[1..1])

This method defines the value of the mcmVersionBuildMetaData
attribute. A single input parameter, of type String, is provided. This
value is a string defining the build metadata. Build metadata is de-
noted by appending a plus sign and a series of dot-separated identi-
fiers immediately following the patch or pre-release version. Exam-
ples include: 1.0.0.-alpha+1, 1.0.0+20130313144700, and
1.0.0-beta+exp.sha.5114f85.

[R109] Identifiers MUST be made up of only ASCII alphanumerics

and a hyphen.

[R110] Identifiers MUST NOT be empty.

[R111] The value of this attribute MUST NOT be a NULL or an

empty string value.

Table 63. Operations of the MCMVersion Class

At this time, no relationships are defined for this class.

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 172

8 References

[1] MEF Forum, Lifecycle Service Orchestration: Reference Architecture and Framework,

MEF 55, March 2016

[2] Gamma, E., Helm, R. Johnson, R., Vlissides, J., “Design Patterns:

Elements of Reusable Object-Oriented Software”, Addison-Wesley, Nov, 1994.

ISBN 978-0201633610

[3] Bäumer, D. Riehle, W. Siberski, M. Wulf, “The Role Object Pattern”, Proceedings of

the 1997 Conference on Object-Oriented Programming Systems, Languages and Appli-

cations (OOPSLA '97), ACM Press, 1997, Page 218-228

[4] Riehle, D., “Composite Design Patterns”, Proceedings of the 1997 Conference on Ob-

ject-Oriented Programming Systems, Languages and Applications (OOPSLA '97),

ACM Press, 1997, Page 218-228

[5] Liskov, B.H., Wing, J.M., “A Behavioral Notion of subtyping”, ACM Transactions on

Programming languages and Systems 16 (6): 1811 - 1841, 1994

[6] Martin, R.C., "Agile Software Development, Principles, Patterns, and Practices", Pren-

tice-Hall, 2002, ISBN: 0-13-597444-5

[7] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14,

RFC 2119, March 1997

[8] Meyer, B., "Object-Oriented Software Construction”, Prentice Hall, second edition,

1997 ISBN 0-13-629155-4

[9] Schmidt, D.C., “Model-Driven Engineering”, IEEE Computer, 2006

[10] Strassner, J., Halpern, J., and van der Meer, S., “Generic Policy Information Model for

Simplified Use of Policy Abstractions (SUPA)”, draft-ietf-supa-generic-policy-info-

model-03, May 2017

[11] Object Management Group, OMG Unified Modeling Language TM (OMG UML), Ver-

sion 2.5.1, December 2017.

[12] Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., Stafford, R., “Patterns of En-

terprise Application Architecture”, Addison-Wesley, November, 2002

[13] MEF, “Ethernet Services Attributes Phase 3”, Technical Specification MEF 10.3, Octo-

ber 2013

[14] ISO, “Geographic Information – Metadata”, ISO 19115:2113

[15] ATIS and MEF, “Ethernet Ordering Technical Specification” (revision of MEF57/J-

Spec-001), atis_mef_201700022R006, December 2017

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 173

[16] https://semver.org/

[17] ETSI, “ETSI GS NFV 003 v1.3.1; Network Functions Virtualisation; Terminology for

Main Concepts in NFV”, January 2018

[18] Internet Engineering Task Force RFC 8174, “Ambiguity of Uppercase vs Lowercase in

RFC 2119 Key Words”, May 2017

https://semver.org/

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 174

Appendix A Basic Mapping between the MCM and TMF Models

The following table defines a simplified association between concrete MCM classes and those

used in TMF625 (TMF API Data Model, version 16.0.1, which is the current latest release). This

mapping will be detailed and enhanced in a future release of the MCM.

MCM Concrete Class Equivalent TMF Class Comments

MCMContact Contact

Significant semantic differences (e.g.,

MCMContact is an MCMInformation-

Resource)

MCMCatalog Catalog

Significant semantic differences (e.g.,

MCMCatalog aggregates MCMCata-

logItems, which can be any type of

MCMManagedEntity; contact info for

Catalogs is significantly different)

MCMCatalogItem No Equivalent No Equivalent

MCMCustomer Customer

Significant semantic differences (e.g.,

this uses the Role-Object pattern,

TMF doesn’t; compliant with

MEF57.1, TMF isn’t).

MCMServiceProvider No Equivalent No Equivalent

MCMAccessProvider No Equivalent No Equivalent

MCMPartner

PartnershipType and

RoleType and unnamed

composition

Significant semantic differences (e.g.,

MCMPartner uses the Role-Object

pattern; TMF625 doesn’t have a Part-

ner class)

MCMBuyer

PartnershipType and

RoleType and unnamed

composition

TMF625 does not define this as a ded-

icated class, as required in MEF57.1

MCMSeller

PartnershipType and

RoleType and unnamed

composition

TMF625 does not define this as a ded-

icated class, as required in MEF57.1

MCMPerson Individual

Significant semantic differences (e.g.,

MCMPerson is part of a Composite

pattern; not used in TMF)

MCMOrganization Organization Same as MCMPerson

MCMProductFeature No Equivalent No Equivalent

MCMServiceFeature No Equivalent No Equivalent

MCMResourceFeature No Equivalent No Equivalent

MCMBusinessTerm No Equivalent No Equivalent

MCMProductOffer ProductOffering

Requires use of the TMF specification

pattern, which is not supported in the

MCM

MCMResourceOffer No Equivalent No Equivalent

 MEF Core Model

MEF 78 © MEF Forum 2019. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 175

MCMServiceOffer No Equivalent No Equivalent

MCMProductAtomic Product

Semantically different, since MCM

uses the composite pattern and

TMF625 doesn’t

MCMProductComposite

Product plus ProductRe-

lationship plus unnamed

composition

Significant semantic differences, since

MCM uses the composite pattern and

TMF625 doesn’t

MCMOrderedService No Equivalent No Equivalent

MCMInternalService No Equivalent No Equivalent

MCMServiceComponent No Equivalent No Equivalent

MCMServiceEndpoint No Equivalent No Equivalent

MCMServiceInterface No Equivalent No Equivalent

MCMMgmtDomain-

Atomic
No Equivalent No Equivalent

MCMMgmtDomain-

Composite
No Equivalent No Equivalent

MCMOrderAtomic ProductOrder
Semantically different, since MCM is

not restricted to ordering Products

MCMOrderItem OrderItem

Semantically different, since MCM

lacks many of the compositions that

are in TMF625 (but these have been

rejected in the latest MEF Ordering

model)

MCMMEFNetwork-

Function
No Equivalent No Equivalent

MCMMEFDescriptor No Equivalent No Equivalent

MCMVersion No Equivalent No Equivalent

Table 64. Brief Comparison of MCM and TMF625 Classes

